Engineering thermal rectification in MoS2 nanoribbons: a non-equilibrium molecular dynamics study

被引:19
|
作者
Sandonas, Leonardo Medrano [1 ,2 ,3 ,4 ]
Gutierrez, Rafael [1 ,2 ,4 ]
Dianat, Arezoo [1 ,2 ,4 ]
Cuniberti, Giovanni [1 ,2 ,4 ,5 ]
机构
[1] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[4] Tech Univ Dresden, Dresden Ctr Computat Mat Sci, D-01062 Dresden, Germany
[5] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany
来源
RSC ADVANCES | 2015年 / 5卷 / 67期
关键词
GRAPHENE NANORIBBONS; HEAT-FLOW; CONDUCTIVITY; CONDUCTANCE; RECTIFIER; PHONONICS;
D O I
10.1039/c5ra05733g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phononics in two-dimensional (2D) materials is an emergent field with a high potential impact from the basic as well as applied research points of view. Thus it is crucial to provide strategies to control heat flow via atomic-scale engineering of the materials. In this study, thermal diodes made of single layer MoS2 nanoribbons are investigated using non-equilibrium classical molecular dynamics. Specifically, we focus on the influence of shape asymmetries of the nanoribbons on the thermal current, and obtain thermal rectification ratios up to 30% for the T-shaped nanoribbons. This behavior is then rationalized through a detailed analysis of the vibrational spectrum of the ribbons. In particular, it turns out that thermal rectification is mostly related to (i) the transversal finite size of the ribbon and (ii) to the different localization behavior of high-frequency modes for forward and backward heat flow directions. We expect our results to shed light on the potential of 2D materials for the engineering of highly efficient nanoscale thermal devices.
引用
收藏
页码:54345 / 54351
页数:7
相关论文
共 50 条
  • [31] Non-equilibrium molecular dynamics study of KcsA gating
    Biggin, PC
    Shrivastava, IH
    Smith, GR
    Sansom, MSP
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 114A - 114A
  • [32] Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations
    Alaghemandi, Mohammad
    Leroy, Frederic
    Algaer, Elena
    Boehm, Michael C.
    Mueller-Plathe, Florian
    NANOTECHNOLOGY, 2010, 21 (07)
  • [33] Non-equilibrium growth of metal clusters on a layered material: Cu on MoS2
    Jing, Dapeng
    Lii-Rosales, Ann
    Lai, King C.
    Li, Qiang
    Kim, Jaeyoun
    Tringides, Michael C.
    Evans, James W.
    Thiel, Patricia A.
    NEW JOURNAL OF PHYSICS, 2020, 22 (05):
  • [34] Intervalley scattering in monolayer MoS2 probed by non-equilibrium optical techniques
    Dal Conte, Stefano
    Bottegoni, Federico
    Pogna, E. A. A.
    De Fazio, D.
    Ambrogio, S.
    Bargigia, I.
    D'Andrea, C.
    Lombardo, A.
    Bruna, M.
    Ciccacci, F.
    Ferrari, A. C.
    Cerullo, G.
    Finazzi, M.
    SPINTRONICS VIII, 2015, 9551
  • [35] Reduced Thermal Conductivity of a Nanoparticle Decorated Nanowire: A Non-equilibrium Molecular Dynamics Study
    Masnoon, Ahmed Shafkat
    Bipasha, Ferdaushi Alam
    Morshed, A. K. M. M.
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2015), 2016, 1754
  • [36] Dynamical Non-Equilibrium Molecular Dynamics
    Ciccotti, Giovanni
    Ferrario, Mauro
    ENTROPY, 2014, 16 (01): : 233 - 257
  • [37] Reverse non-equilibrium molecular dynamics
    Müller-Plathe, F
    Bordat, P
    NOVEL METHODS IN SOFT MATTER SIMULATIONS, 2004, 640 : 310 - 326
  • [38] NON-EQUILIBRIUM MOLECULAR-DYNAMICS
    HOOVER, WG
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1983, 34 : 103 - 127
  • [39] Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study
    Mackowiak, Sz.
    Heyes, D. M.
    Dini, D.
    Branka, A. C.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (16):
  • [40] Thermal Conductivity in Zeolites Studied by Non-equilibrium Molecular Dynamics Simulations
    Schnell, Sondre K.
    Vlugt, Thijs J. H.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2013, 34 (07) : 1197 - 1213