Demonstrating a Bayesian Online Learning for Energy-Aware Resource Orchestration in vRANs

被引:0
|
作者
Ayala-Romero, Jose A. [1 ]
Garcia-Saavedra, Andres [2 ]
Costa-Perez, Xavier [2 ,3 ,4 ]
Iosifidis, George [5 ]
机构
[1] Trinity Coll Dublin, Dublin, Ireland
[2] NEC Labs Europe GmbH, Heidelberg, Germany
[3] i2CAT Fdn, Barcelona, Spain
[4] ICREA, Barcelona, Spain
[5] Delft Univ Technol, Delft, Netherlands
关键词
D O I
10.1109/INFOCOMWKSHPS51825.2021.9484585
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Radio Access Network Virtualization (vRAN) will spearhead the quest towards supple radio stacks that adapt to heterogeneous infrastructure: from energy-constrained platforms deploying cells-on-wheels (e.g., drones) or battery-powered cells to green edge clouds. We demonstrate a novel machine learning approach to solve resource orchestration problems in energy-constrained vRANs. Specifically, we demonstrate two algorithms: (i) BP-vRAN, which uses Bayesian online learning to balance performance and energy consumption, and (ii) SBP-vRAN, which augments our Bayesian optimization approach with safe controls that maximize performance while respecting hard power constraints. We show that our approaches are data-efficient- converge an order of magnitude faster than other machine learning methods-and have provably performance, which is paramount for carrier-grade vRANs. We demonstrate the advantages of our approach in a testbed comprised of fully-fledged LTE stacks and a power meter, and implementing our approach into O-RAN's non-real-time RAN Intelligent Controller (RIC).
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Energy-aware resource allocation in WLAN mobile devices
    Kim, J
    Shin, MS
    Shrestha, SL
    Chong, S
    GLOBECOM '05: IEEE Global Telecommunications Conference, Vols 1-6: DISCOVERY PAST AND FUTURE, 2005, : 3285 - 3289
  • [22] Energy-Aware Autonomic Resource Scheduling Framework for Cloud
    Dewangan, Bhupesh Kumar
    Agarwal, Amit
    Venkatadri, M.
    Pasricha, Ashutosh
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2019, 4 (01) : 41 - 55
  • [23] Energy-aware grid resource scheduling: model and algorithm
    Li, Chunlin
    Li, FangYun
    Li, Layuan
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2010, 37 (01) : 39 - 47
  • [24] Energy-aware Scheduling of Virtualized Base Stations in O-RAN with Online Learning
    Kalntis, Michail
    Iosifidis, George
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 6048 - 6054
  • [25] Online Machine Learning for Energy-Aware Multicore Real-Time Embedded Systems
    Conradi Hoffmann, Jose Luis
    Frohlich, Antonio Augusto
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (02) : 493 - 505
  • [26] Energy-Aware Resource Scheduling for Serverless Edge Computing
    Aslanpour, Mohammad Sadegh
    Toosi, Adel N.
    Cheema, Muhammad Aamir
    Gaire, Raj
    2022 22ND IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2022), 2022, : 190 - 199
  • [27] ENERDGE: Distributed Energy-Aware Resource Allocation at the Edge
    Avgeris, Marios
    Spatharakis, Dimitrios
    Dechouniotis, Dimitrios
    Leivadeas, Aris
    Karyotis, Vasileios
    Papavassiliou, Symeon
    SENSORS, 2022, 22 (02)
  • [28] An Energy-Aware Resource Design Model for Constrained Networks
    Correia, N.
    Schutz, G.
    Mazayev, A.
    Martins, J.
    Barradas, A.
    IEEE COMMUNICATIONS LETTERS, 2016, 20 (08) : 1631 - 1634
  • [29] Online fault tolerant energy-aware algorithm for CubeSats
    Dobias, Petr
    Casseau, Emmanuel
    Sinnen, Oliver
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2023, 38
  • [30] Energy-aware task scheduling by a true online reinforcement learning in wireless sensor networks
    Khan, Muhidul Islam
    Xia, Kewen
    Ali, Ahmad
    Aslam, Nelofar
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2017, 25 (04) : 244 - 258