FLOD: Oblivious Defender for Private Byzantine-Robust Federated Learning with Dishonest-Majority

被引:33
|
作者
Dong, Ye [1 ,2 ]
Chen, Xiaojun [1 ,2 ]
Li, Kaiyun [1 ,2 ]
Wang, Dakui [1 ]
Zeng, Shuai [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
来源
关键词
Privacy-preserving; Byzantine-robust; Federated; Learning; Dishonest-majority; FRAMEWORK; EFFICIENT;
D O I
10.1007/978-3-030-88418-5_24
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Privacy and Byzantine-robustness are two major concerns of federated learning (FL), but mitigating both threats simultaneously is highly challenging: privacy-preserving strategies prohibit access to individual model updates to avoid leakage, while Byzantine-robust methods require access for comprehensive mathematical analysis. Besides, most Byzantine-robust methods only work in the honest-majority setting. We present FLOD, a novel oblivious defender for private Byzantinerobust FL in dishonest-majority setting. Basically, we propose a novel Hamming distance-based aggregation method to resist > 1/2 Byzantine attacks using a small root-dataset and server-model for bootstrapping trust. Furthermore, we employ two non-colluding servers and use additive homomorphic encryption (AHE) and secure two-party computation (2PC) primitives to construct efficient privacy-preserving building blocks for secure aggregation, in which we propose two novel in-depth variants of Beaver Multiplication triples (MT) to reduce the overhead of Bit to Arithmetic (Bit2A) conversion and vector weighted sum aggregation (VSWA) significantly. Experiments on real-world and synthetic datasets demonstrate our effectiveness and efficiency: (i) FLOD defeats known Byzantine attacks with a negligible effect on accuracy and convergence, (ii) achieves a reduction of similar to 2x for offline (resp. online) overhead of Bit2A and VSWA compared to ABY-AHE (resp. ABY-MT) based methods (NDSS'15), (iii) and reduces total online communication and run-time by 167-1416x and 3.1-7.4x compared to FLGUARD (Crypto Eprint 2021/025).
引用
收藏
页码:497 / 518
页数:22
相关论文
共 50 条
  • [1] Differentially Private Byzantine-Robust Federated Learning
    Ma, Xu
    Sun, Xiaoqian
    Wu, Yuduo
    Liu, Zheli
    Chen, Xiaofeng
    Dong, Changyu
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3690 - 3701
  • [2] Communication-Efficient and Byzantine-Robust Differentially Private Federated Learning
    Li, Min
    Xiao, Di
    Liang, Jia
    Huang, Hui
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (08) : 1725 - 1729
  • [3] Byzantine-Robust Aggregation for Federated Learning with Reinforcement Learning
    Yan, Sizheng
    Du, Junping
    Xue, Zhe
    Li, Ang
    WEB AND BIG DATA, APWEB-WAIM 2024, PT IV, 2024, 14964 : 152 - 166
  • [4] AFLGuard: Byzantine-robust Asynchronous Federated Learning
    Fang, Minghong
    Liu, Jia
    Gong, Neil Zhenqiang
    Bentley, Elizabeth S.
    PROCEEDINGS OF THE 38TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE, ACSAC 2022, 2022, : 632 - 646
  • [5] Efficient privacy-preserving federated learning under dishonest-majority setting
    Yinbin MIAO
    Da KUANG
    Xinghua LI
    Tao LENG
    Ximeng LIU
    Jianfeng MA
    ScienceChina(InformationSciences), 2024, 67 (05) : 323 - 324
  • [6] Efficient privacy-preserving federated learning under dishonest-majority setting
    Miao, Yinbin
    Kuang, Da
    Li, Xinghua
    Leng, Tao
    Liu, Ximeng
    Ma, Jianfeng
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (05)
  • [7] FedSuper: A Byzantine-Robust Federated Learning Under Supervision
    Zhao, Ping
    Jiang, Jin
    Zhang, Guanglin
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2024, 20 (02)
  • [8] Byzantine-robust federated learning with ensemble incentive mechanism
    Zhao, Shihai
    Pu, Juncheng
    Fu, Xiaodong
    Liu, Li
    Dai, Fei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 159 : 272 - 283
  • [9] CareFL: Contribution Guided Byzantine-Robust Federated Learning
    Dong, Qihao
    Yang, Shengyuan
    Dai, Zhiyang
    Gao, Yansong
    Wang, Shang
    Cao, Yuan
    Fu, Anmin
    Susilo, Willy
    IEEE Transactions on Information Forensics and Security, 2024, 19 : 9714 - 9729
  • [10] Privacy-preserving Byzantine-robust federated learning
    Ma, Xu
    Zhou, Yuqing
    Wang, Laihua
    Miao, Meixia
    COMPUTER STANDARDS & INTERFACES, 2022, 80