AFLGuard: Byzantine-robust Asynchronous Federated Learning

被引:6
|
作者
Fang, Minghong [1 ]
Liu, Jia [1 ]
Gong, Neil Zhenqiang [2 ]
Bentley, Elizabeth S. [3 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
[2] Duke Univ, Durham, NC USA
[3] Air Force Res Lab, Rome, NY USA
关键词
Federated Learning; Poisoning Attacks; Byzantine Robustness;
D O I
10.1145/3564625.3567991
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is an emerging machine learning paradigm, in which clients jointly learn a model with the help of a cloud server. A fundamental challenge of FL is that the clients are often heterogeneous, e.g., they have different computing powers, and thus the clients may send model updates to the server with substantially different delays. Asynchronous FL aims to address this challenge by enabling the server to update the model once any client's model update reaches it without waiting for other clients' model updates. However, like synchronous FL, asynchronous FL is also vulnerable to poisoning attacks, in which malicious clients manipulate the model via poisoning their local data and/or model updates sent to the server. Byzantine-robust FL aims to defend against poisoning attacks. In particular, Byzantine-robust FL can learn an accurate model even if some clients are malicious and have Byzantine behaviors. However, most existing studies on Byzantine-robust FL focused on synchronous FL, leaving asynchronous FL largely unexplored. In this work, we bridge this gap by proposing AFLGuard, a Byzantine-robust asynchronous FL method. We show that, both theoretically and empirically, AFLGuard is robust against various existing and adaptive poisoning attacks (both untargeted and targeted). Moreover, AFLGuard outperforms existing Byzantine-robust asynchronous FL methods.
引用
收藏
页码:632 / 646
页数:15
相关论文
共 50 条
  • [1] Byzantine-Robust Aggregation for Federated Learning with Reinforcement Learning
    Yan, Sizheng
    Du, Junping
    Xue, Zhe
    Li, Ang
    WEB AND BIG DATA, APWEB-WAIM 2024, PT IV, 2024, 14964 : 152 - 166
  • [2] Differentially Private Byzantine-Robust Federated Learning
    Ma, Xu
    Sun, Xiaoqian
    Wu, Yuduo
    Liu, Zheli
    Chen, Xiaofeng
    Dong, Changyu
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3690 - 3701
  • [3] FedSuper: A Byzantine-Robust Federated Learning Under Supervision
    Zhao, Ping
    Jiang, Jin
    Zhang, Guanglin
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2024, 20 (02)
  • [4] Byzantine-robust federated learning with ensemble incentive mechanism
    Zhao, Shihai
    Pu, Juncheng
    Fu, Xiaodong
    Liu, Li
    Dai, Fei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 159 : 272 - 283
  • [5] CareFL: Contribution Guided Byzantine-Robust Federated Learning
    Dong, Qihao
    Yang, Shengyuan
    Dai, Zhiyang
    Gao, Yansong
    Wang, Shang
    Cao, Yuan
    Fu, Anmin
    Susilo, Willy
    IEEE Transactions on Information Forensics and Security, 2024, 19 : 9714 - 9729
  • [6] Privacy-preserving Byzantine-robust federated learning
    Ma, Xu
    Zhou, Yuqing
    Wang, Laihua
    Miao, Meixia
    COMPUTER STANDARDS & INTERFACES, 2022, 80
  • [7] Towards Federated Learning with Byzantine-Robust Client Weighting
    Portnoy, Amit
    Tirosh, Yoav
    Hendler, Danny
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [8] Privacy-Preserving and Byzantine-Robust Federated Learning
    Dong, Caiqin
    Weng, Jian
    Li, Ming
    Liu, Jia-Nan
    Liu, Zhiquan
    Cheng, Yudan
    Yu, Shui
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (02) : 889 - 904
  • [9] BOBA: Byzantine-Robust Federated Learning with Label Skewness
    Bao, Wenxuan
    Wu, Jun
    He, Jingrui
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [10] Byzantine-Robust Federated Learning through Dynamic Clustering
    Wang, Hanyu
    Wang, Liming
    Li, Hongjia
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 222 - 230