A Fully-Unsupervised Possibilistic C-Means Clustering Algorithm

被引:24
|
作者
Yang, Miin-Shen [1 ]
Chang-Chien, Shou-Jen [1 ]
Nataliani, Yessica [1 ,2 ]
机构
[1] Chung Yuan Christian Univ, Dept Appl Math, Chungli 32023, Taiwan
[2] Satya Wacana Christian Univ, Dept Informat Syst, Salatiga 50711, Indonesia
来源
IEEE ACCESS | 2018年 / 6卷
关键词
Clustering; fuzzy clustering; possibilistic clustering; fuzzy C-means (FCM); possibilistic C-means (PCM); fully-unsupervised PCM (FU-PCM);
D O I
10.1109/ACCESS.2018.2884956
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In 1993, Krishnapuram and Keller first proposed possibilistic C-means (PCM) clustering by relaxing the constraint in fuzzy C-means of which memberships for a data point across classes sum to 1. The PCM algorithm tends to produce coincident clusters that can be a merit of PCM as a good mode-seeking algorithm, and so various extensions of PCM had been proposed in the literature. However, the performance of PCM and its extensions heavily depends on initializations and parameters selection with a number of clusters to be given a priori. In this paper, we propose a novel PCM algorithm, termed a fully unsupervised PCM (FU-PCM), without any initialization and parameter selection that can automatically find a good number of clusters. We start by constructing a generalized framework for PCM clustering that can be a generalization of most existing PCM algorithms. Based on the generalized PCM framework, we propose the new type FU-PCM so that the proposed FU-PCM algorithm is free of parameter selection and initializations without a given number of clusters. That is, the FU-PCM becomes a FU-PCM clustering algorithm. Comparisons between the proposed FU-PCM and other existing methods are made. The computational complexity of the FU-PCM algorithm is also analyzed. Some numerical data and real data sets are used to show these good aspects of FU-PCM. Experimental results and comparisons actually demonstrate the proposed FU-PCM is an effective parameter-free clustering algorithm that can also automatically find the optimal number of clusters.
引用
收藏
页码:78308 / 78320
页数:13
相关论文
共 50 条
  • [31] A New Similarity Measure Based Robust Possibilistic C-Means Clustering Algorithm
    Jia, Kexin
    He, Miao
    Cheng, Ting
    WEB INFORMATION SYSTEMS AND MINING, PT II, 2011, 6988 : 335 - 342
  • [32] Interval Type-2 Fuzzy Possibilistic C-Means Clustering Algorithm
    Rubio, E.
    Castillo, Oscar
    Melin, Patricia
    RECENT DEVELOPMENTS AND NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2016, 342 : 185 - 194
  • [33] A New Suppression-based Possibilistic Fuzzy c-means Clustering Algorithm
    Arora, J.
    Tushir, M.
    Dadhwal, S. K.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2023, 10 (03)
  • [34] Secure weighted possibilistic c-means algorithm on cloud for clustering big data
    Zhang, Qingchen
    Yang, Laurence T.
    Castiglione, Arcangelo
    Chen, Zhikui
    Li, Peng
    INFORMATION SCIENCES, 2019, 479 : 515 - 525
  • [35] Interval Fuzzy Possibilistic C-Means Clustering Algorithm on Smart Phone Implement
    Jeng, Jin-Tsong
    Chuang, Chen-Chia
    Chang, Sheng-Chieh
    2014 PROCEEDINGS OF THE SICE ANNUAL CONFERENCE (SICE), 2014, : 78 - +
  • [36] On the Convergence of the Sparse Possibilistic C-Means Algorithm
    Koutroumbas, Konstantinos D.
    Xenaki, Spyridoula D.
    Rontogiannis, Athanasios A.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (01) : 324 - 337
  • [37] The possibilistic C-means algorithm: Insights and recommendations
    Krishnapuram, R
    Keller, JM
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1996, 4 (03) : 385 - 393
  • [38] Possibilistic C-Means Clustering Using Fuzzy Relations
    Zarandi, M. H. Fazel
    Kalhori, M. Rostam Niakan
    Jahromi, M. F.
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1137 - 1142
  • [39] Tensor-Based Possibilistic C-Means Clustering
    Benjamin, Josephine Bernadette M.
    Yang, Miin-Shen
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (10) : 5939 - 5950
  • [40] Possibilistic and fuzzy c-means clustering with weighted objects
    Miyamoto, Sadaaki
    Inokuchi, Ryo
    Kuroda, Youhei
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 869 - +