Standard Deviation of Spaceborne GNSS-R Ocean Scatterometry Measurements

被引:2
|
作者
Nan, Yang [1 ]
Li, Weiqiang [2 ,3 ]
Ye, Shirong [1 ]
Du, Hao [1 ]
Cardellach, Estel [2 ,3 ]
Rius, Antonio [2 ,3 ]
Liu, Jingnan [1 ]
机构
[1] Wuhan Univ, GNSS Res Ctr, Wuhan 430079, Peoples R China
[2] CSIC, Inst Space Sci, Earth Observat Res Grp, ICE, Barcelona 08193, Spain
[3] Inst Estudis Espacials Catalunya, Barcelona 08034, Spain
基金
中国国家自然科学基金;
关键词
Global navigation satellite system reflectometry (GNSS-R); normalized bistatic radar cross section (NBRCS); sea surface wind speed; signal-to-noise ratio (SNR); uncertainty; GPS SIGNALS; WIND; REFLECTOMETRY; RETRIEVALS; SCATTERING; ORBIT;
D O I
10.1109/TGRS.2022.3146980
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article analyzes the contribution of the delay-Doppler map (DDM) observation noise to the uncertainty of global navigation satellite system reflectometry (GNSS-R) ocean scatterometry observables and the retrieved wind speeds. For this purpose, the parameter K-p, which is commonly used in the traditional microwave scatterometer, is introduced to characterize the relative standard deviation (RSD) of the GNSS-R normalized bistatic radar cross section (NBRCS) measurement. Based on the noise covariance of the DDM measurements, the analytic expressions of RSD are derived for two cases, i.e., the NBRCS computed with one single DDM bin at the specular point and the NBRCS computed from M x N DDM bins around the specular point. By analyzing the dependence of the RSD on different system, geometry, and instrument parameters, the simplified models of RSD are derived empirically. As a simple application of the proposed models, the wind speed retrieval errors are computed using parameters from the Cyclone GNSS (CYGNSS) mission. It shows that the wind speed retrieval error due to thermal noise and speckle can be an important error source for the overall wind speed retrieval performance, especially at high wind speed and with the high incidence angle GNSS-R measurements.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Blind Sea Clutter Suppression for Spaceborne GNSS-R Target Detection
    Cheong, Joon Wayn
    Southwell, Benjamin J.
    Dempster, Andrew G.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 5373 - 5378
  • [42] Study on the Exploration of Spaceborne GNSS-R Raw Data Focusing on Altimetry
    Song, Minfeng
    He, Xiufeng
    Wang, Xiaolei
    Jia, Dongzhen
    Xiao, Ruya
    Shi, Hongkai
    Wu, Yihao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 6142 - 6154
  • [43] SPACEBORNE GNSS-R FOR HIGH LATITUDE IONOSPHERIC TEC DISTURBANCE OBSERVATIONS
    Wang, Yang
    Morton, Y. Jade
    2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021), 2021, : 21 - 24
  • [44] Improving Spaceborne GNSS-R Algal Bloom Detection with Meteorological Data
    Zhen, Yinqing
    Yan, Qingyun
    REMOTE SENSING, 2023, 15 (12)
  • [45] STUDY OF ACCURATE OCEAN-ALTIMETRY WITH GNSS-R
    Zhang, Yun
    Liu, Fengling
    Gu, Qiming
    Meng, Wanting
    Hong, Zhonghua
    Han, Yanling
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1410 - 1413
  • [46] A simulator for GNSS-R polarimetric observations over the ocean
    Schiavulli, Domenico
    Ghavidel, Ali
    Camps, Adriano
    Migliaccio, Maurizio
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3802 - 3805
  • [47] The IEEE-SA Working Group on Spaceborne GNSS-R: Scene Study
    Carreno-Luengo, Hugo
    Camps, Adriano
    Ruf, Chris
    Floury, Nicolas
    Martin-Neira, Manuel
    Wang, Tianlin
    Khalsa, Siri Jodha
    Clarizia, Maria Paola
    Reynolds, Jennifer
    Johnson, Joel
    O'Brien, Andrew
    Galdi, Carmela
    Bisceglie, Maurizio Di
    Dielacher, Andreas
    Jales, Philip
    Unwin, Martin
    King, Lucinda
    Foti, Giuseppe
    Shah, Rashmi
    Pascual, Daniel
    Schreiner, Bill
    Asgarimehr, Milad
    Wickert, Jens
    Ribo, Serni
    Cardellach, Estel
    IEEE ACCESS, 2021, 9 : 89906 - 89933
  • [48] Spaceborne GNSS-R for Sea Ice Classification Using Machine Learning Classifiers
    Zhu, Yongchao
    Tao, Tingye
    Li, Jiangyang
    Yu, Kegen
    Wang, Lei
    Qu, Xiaochuan
    Li, Shuiping
    Semmling, Maximilian
    Wickert, Jens
    REMOTE SENSING, 2021, 13 (22)
  • [49] SPACEBORNE GNSS-R END-TO-END SIMULATOR: TOPOGRAPHY AND VEGETATION EFFECTS
    Park, H.
    Camps, A.
    Pascual, D.
    Querol, J.
    Onrubia, R.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3157 - 3160
  • [50] Response to Variations in River Flowrate by a Spaceborne GNSS-R River Width Estimator
    Warnock, April
    Ruf, Christopher
    REMOTE SENSING, 2019, 11 (20)