Computer simulation of annealing after cluster ion implantation

被引:0
|
作者
Insepov, Z [1 ]
Aoki, T [1 ]
Matsuo, J [1 ]
Yamada, I [1 ]
机构
[1] Kyoto Univ, Ion Beam Engn Expt Lab, Sakyo Ku, Kyoto 606, Japan
关键词
D O I
10.1557/PROC-532-147
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Molecular Dynamics (MD) and Metropolis Monte-Carlo (MMC) models of monomer B and decaborane implantation into Si and following rapid thermal annealing (RTA) processes have been developed in this paper. The implanted B dopant diffusion coefficients were obtained for different substrate temperatures. The simulation of decaborane ion implantation has revealed the formation of an amorphized area in a subsurface region, much larger than that of a single BC implantation, with the same energy per ion. The B diffusion coefficient shows an unusual temperature dependence with two different activation energies. Low activation energy, less than 0.2, was obtained for a low-temperature region, and a higher activation energy, similar to 3 ev, for a higher-temperature region which is typical for the RTA processing. The higher activation energy is comparable with the equilibrium activation energy, 3.4 ev, for B diffusion in Si.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 50 条
  • [41] Complex Diagnostics of Silicon-on-Insulator Layers after Ion Implantation and Annealing
    Yunin, P. A.
    Drozdov, M. N.
    Novikov, A. V.
    Shmagin, V. B.
    Demidov, E. V.
    Mikhailov, A. N.
    Tetelbaum, D. I.
    Belov, A. I.
    JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (03): : 586 - 593
  • [42] Cluster Ion Implantation for Process Application - Carbon Cluster co-Implantation
    Tanjyo, M.
    Nagayama, T.
    Onoda, H.
    Hamamoto, N.
    Umisedo, S.
    Koga, Y.
    Une, H.
    Maehara, N.
    Kawamura, Y.
    Hashino, Y.
    Nakashima, Y.
    Hashimoto, M.
    Tokoro, N.
    Nagai, N.
    Sekar, K.
    Krull, W.
    ION IMPLANTATION TECHNOLOGY 2010, 2010, 1321 : 105 - +
  • [43] Computer simulation on low energy ion implantation based on molecular dynamics methods
    Ran, YJ
    Gao, WY
    Huang, R
    Yu, M
    Zhang, X
    Wang, YY
    CHINESE JOURNAL OF ELECTRONICS, 2000, 9 (04): : 359 - 363
  • [44] Computer simulation of plasma for plasma immersed ion implantation and deposition with bipolar pulses
    Miyagawa, Y
    Ikeyama, M
    Miyagawa, S
    Nakadate, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 206 : 767 - 771
  • [46] Computer simulation of deformed scanning wave effect on dose distribution in ion implantation
    Sone, Y
    Satoh, M
    Yamamoto, Y
    ION BEAM MODIFICATION OF MATERIALS, 1996, : 1123 - 1126
  • [47] DYNAMIC COMPUTER-SIMULATION OF HIGH-ENERGY ION-IMPLANTATION
    MOLLER, W
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1989, 2 (1-3): : 21 - 25
  • [48] Cluster effects in deuterium cluster ion implantation on solids
    Wang, TS
    Ochiai, K
    Maruta, K
    Takahashi, A
    ACTA PHYSICA SINICA-OVERSEAS EDITION, 1999, 8 (08): : 565 - 570
  • [49] Development of the ion source for cluster implantation
    Kulevoy, T. V.
    Seleznev, D. N.
    Kozlov, A. V.
    Kuibeda, R. P.
    Kropachev, G. N.
    Alexeyenko, O. V.
    Dugin, S. N.
    Oks, E. M.
    Gushenets, V. I.
    Hershcovitch, A.
    Jonson, B.
    Poole, H. J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (02):
  • [50] Ion implantation and cluster formation in silica
    Salh, Roushdey
    Kourkoutis, L. Fitting
    Zamoryanskaya, M. V.
    Schmidt, B.
    Fitting, H. -J.
    SUPERLATTICES AND MICROSTRUCTURES, 2009, 45 (4-5) : 362 - 368