Beta- and gamma-band activity reflect predictive coding in the processing of causal events

被引:59
|
作者
van Pelt, Stan [1 ]
Heil, Lieke [1 ]
Kwisthout, Johan [1 ]
Ondobaka, Sasha [1 ,2 ,3 ]
van Rooij, Iris [1 ]
Bekkering, Harold [1 ]
机构
[1] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Montessorilaan 3, NL-6525 HR Nijmegen, Netherlands
[2] UCL, Wellcome Trust Ctr Neuroimaging, London, England
[3] UCL, Sobell Dept, London, England
关键词
causal inference; action perception; predictive coding; magnetoencephalography; connectivity; MEDIAL PREFRONTAL CORTEX; VISUAL AREAS; TEMPOROPARIETAL JUNCTION; SOCIAL-INTERACTION; GRANGER CAUSALITY; BRAIN; SYNCHRONIZATION; OSCILLATIONS; FEEDBACK; MONKEY;
D O I
10.1093/scan/nsw017
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In daily life, complex events are perceived in a causal manner, suggesting that the brain relies on predictive processes to model them. Within predictive coding theory, oscillatory beta-band activity has been linked to top-down predictive signals and gamma-band activity to bottom-up prediction errors. However, neurocognitive evidence for predictive coding outside lower-level sensory areas is scarce. We used magnetoencephalography to investigate neural activity during probabilitydependent action perception in three areas pivotal for causal inference, superior temporal sulcus, temporoparietal junction and medial prefrontal cortex, using bowling action animations. Within this network, Granger-causal connectivity in the beta-band was found to be strongest for backward top-down connections and gamma for feed-forward bottom-up connections. Moreover, beta-band power in TPJ increased parametrically with the predictability of the action kinematics-outcome sequences. Conversely, gamma-band power in TPJ and MPFC increased with prediction error. These findings suggest that the brain utilizes predictive-coding-like computations for higher-order cognition such as perception of causal events.
引用
收藏
页码:973 / 980
页数:8
相关论文
共 50 条
  • [21] Decrease in gamma-band activity tracks sequence learning
    Madhavan, Radhika
    Millman, Daniel
    Tang, Hanlin
    Crone, Nathan E.
    Lenz, Fredrick A.
    Tierney, Travis S.
    Madsen, Joseph R.
    Kreiman, Gabriel
    Anderson, William S.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2015, 8
  • [22] Olfactory Recognition Based on EEG Gamma-Band Activity
    Aydemir, Onder
    NEURAL COMPUTATION, 2017, 29 (06) : 1667 - 1680
  • [23] Induced gamma-band activity in a similarity grouping task
    Jung, J
    Kobayashi, T
    FRONTIERS IN HUMAN BRAIN TOPOGRAPHY, 2004, 1270 : 225 - 228
  • [24] Individual performance in mental image processing is correlated with dynamic changes in the gamma-band brain activity
    Iwaki, Sunao
    Sutani, Kouichi
    Inagawa, Michiyo
    Tobinaga, Yoshikazu
    Nishimura, Kazuo
    NEUROSCIENCE RESEARCH, 2011, 71 : E145 - E145
  • [25] High gamma-band topography during processing of emotional stimuli
    Fritzer, G
    Folgmann, S
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2004, 54 (1-2) : 134 - 135
  • [26] Effects of beta-band and gamma-band rhythmic stimulation on motor inhibition
    Leunissen, Inge
    Van Steenkiste, Manon
    Heise, Kirstin-Friederike
    Monteiro, Thiago Santos
    Dunovan, Kyle
    Mantini, Dante
    Coxon, James P.
    Swinnen, Stephan P.
    ISCIENCE, 2022, 25 (05)
  • [27] Gamma band activity and its synchronization reflect the dysfunctional emotional processing in alexithymic persons
    Matsumoto, Atsushi
    Ichikawa, Yoko
    Kanayama, Noriaki
    Ohira, Hideki
    Iidaka, Tetsuya
    PSYCHOPHYSIOLOGY, 2006, 43 (06) : 533 - 540
  • [28] Coherence of gamma-band EEG activity as a basis for associative learning
    Miltner, WHR
    Braun, C
    Arnold, M
    Witte, H
    Taub, E
    NATURE, 1999, 397 (6718) : 434 - 436
  • [29] EEG gamma-band activity in rapid serial visual presentation
    Kranczioch, C
    Debener, S
    Herrmann, CS
    Engel, AK
    EXPERIMENTAL BRAIN RESEARCH, 2006, 169 (02) : 246 - 254
  • [30] Changes of gamma-band oscillatory activity to tonic muscle pain
    Li, Linling
    Liu, Xiaowu
    Cai, Chuan
    Yang, Yan
    Li, Disen
    Xiao, Lizu
    Xiong, Donglin
    Hu, Li
    Qiu, Yunhai
    NEUROSCIENCE LETTERS, 2016, 627 : 126 - 131