Control of displacement front in a model of immiscible two-phase flow in porous media

被引:7
|
作者
Akhmetzyanov, A. V. [1 ]
Kushner, A. G. [1 ,2 ]
Lychagin, V. V. [1 ,3 ]
机构
[1] Russian Acad Sci, Trapeznikov Inst Control Sci, Profsoyuznaya Ul 65, Moscow 117997, Russia
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
[3] Univ Tromso, Tromso, Norway
基金
俄罗斯科学基金会;
关键词
D O I
10.1134/S1064562416040074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the Buckley-Leverett equation describing the flow of two immiscible fluids in porous media, an exact parametric representation of the solution is constructed with the help of the Backlund transformation. As a result, the advance of the displacement front can be controlled to a high degree of accuracy. The method is illustrated using an example of a typical oil well with actual parameters.
引用
收藏
页码:378 / 381
页数:4
相关论文
共 50 条
  • [31] A virtual element method for the two-phase flow of immiscible fluids in porous media
    Berrone, Stefano
    Busetto, Martina
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (01) : 195 - 216
  • [32] The Co-Moving Velocity in Immiscible Two-Phase Flow in Porous Media
    Roy, Subhadeep
    Pedersen, Hakon
    Sinha, Santanu
    Hansen, Alex
    TRANSPORT IN POROUS MEDIA, 2022, 143 (01) : 69 - 102
  • [33] The Co-Moving Velocity in Immiscible Two-Phase Flow in Porous Media
    Subhadeep Roy
    Håkon Pedersen
    Santanu Sinha
    Alex Hansen
    Transport in Porous Media, 2022, 143 : 69 - 102
  • [34] A statistical mechanics framework for immiscible and incompressible two-phase flow in porous media
    Hansen, Alex
    Flekkoy, Eirik Grude
    Sinha, Santanu
    Slotte, Per Arne
    ADVANCES IN WATER RESOURCES, 2023, 171
  • [35] The gradient flow structure for incompressible immiscible two-phase flows in porous media
    Cances, Clement
    Gallouet, Thomas O.
    Monsaingeon, Leonard
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (11) : 985 - 989
  • [36] Nonisothermal immiscible compressible thermodynamically consistent two-phase flow in porous media
    Jurak, Mladen
    Koldoba, Alexandre
    Konyukhov, Andrey
    Pankratov, Leonid
    COMPTES RENDUS MECANIQUE, 2019, 347 (12): : 920 - 929
  • [37] Immiscible Two-Phase Flow in Porous Media: Effective Rheology in the Continuum Limit
    Subhadeep Roy
    Santanu Sinha
    Alex Hansen
    Transport in Porous Media, 2024, 151 : 1295 - 1311
  • [38] A virtual element method for the two-phase flow of immiscible fluids in porous media
    Stefano Berrone
    Martina Busetto
    Computational Geosciences, 2022, 26 : 195 - 216
  • [39] Adaptive heterogeneous multiscale methods for immiscible two-phase flow in porous media
    Patrick Henning
    Mario Ohlberger
    Ben Schweizer
    Computational Geosciences, 2015, 19 : 99 - 114
  • [40] Immiscible Two-Phase Flow in Porous Media: Effective Rheology in the Continuum Limit
    Roy, Subhadeep
    Sinha, Santanu
    Hansen, Alex
    TRANSPORT IN POROUS MEDIA, 2024, 151 (06) : 1295 - 1311