On the overfly algorithm in deep learning of neural networks

被引:2
|
作者
Tsygvintsev, Alexei [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA, 46 Allee Italie, F-69364 Lyon 07, France
关键词
Deep learning; Neural networks; Dynamical systems; Gradient descent; LOCAL MINIMA;
D O I
10.1016/j.amc.2018.12.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the supervised backpropagation training of multilayer neural networks from a dynamical systems point of view. We discuss some links with the qualitative theory of differential equations and introduce the overfly algorithm to tackle the local minima problem. Our approach is based on the existence of first integrals of the generalised gradient system with build-in dissipation. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:348 / 358
页数:11
相关论文
共 50 条
  • [41] Learning Structured Sparsity in Deep Neural Networks
    Wen, Wei
    Wu, Chunpeng
    Wang, Yandan
    Chen, Yiran
    Li, Hai
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [42] Evolving Deep Neural Networks for Continuous Learning
    Atamanczuk, Bruna
    Karadas, Kurt Arve Skipenes
    Agrawal, Bikash
    Chakravorty, Antorweep
    FRONTIERS OF ARTIFICIAL INTELLIGENCE, ETHICS, AND MULTIDISCIPLINARY APPLICATIONS, FAIEMA 2023, 2024, : 3 - 16
  • [43] Neural networks and deep learning: a brief introduction
    Georgevici, Adrian Iustin
    Terblanche, Marius
    INTENSIVE CARE MEDICINE, 2019, 45 (05) : 712 - 714
  • [44] Representational Distance Learning for Deep Neural Networks
    McClure, Patrick
    Kriegeskorte, Nikolaus
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
  • [45] Learning hidden elasticity with deep neural networks
    Chen, Chun-Teh
    Gu, Grace X.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (31)
  • [46] Evolutionary neural networks for deep learning: a review
    Ma, Yongjie
    Xie, Yirong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (10) : 3001 - 3018
  • [47] Deep Learning for Epidemiologists: An Introduction to Neural Networks
    Serghiou, Stylianos
    Rough, Kathryn
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2023, 192 (11) : 1904 - 1916
  • [48] Learning Sparse Patterns in Deep Neural Networks
    Wen, Weijing
    Yang, Fan
    Su, Yangfeng
    Zhou, Dian
    Zeng, Xuan
    2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2019,
  • [49] Variational tensor neural networks for deep learning
    Jahromi, Saeed S.
    Orus, Roman
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Piecewise linear neural networks and deep learning
    Tao, Qinghua
    Li, Li
    Huang, Xiaolin
    Xi, Xiangming
    Wang, Shuning
    Suykens, Johan A. K.
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):