The Darboux Transformation and N-Soliton Solutions of Coupled Cubic-Quintic Nonlinear Schrodinger Equation on a Time-Space Scale

被引:5
|
作者
Dong, Huanhe [1 ]
Wei, Chunming [1 ]
Zhang, Yong [1 ]
Liu, Mingshuo [1 ]
Fang, Yong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
coupled cubic-quintic nonlinear Schrodinger equation; time-space scales; Darboux transformation; N-soliton solution; BACKLUND TRANSFORMATION; WAVE SOLUTIONS; SYSTEMS;
D O I
10.3390/fractalfract6010012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coupled cubic-quintic nonlinear Schrodinger (CQNLS) equation is a universal mathematical model describing many physical situations, such as nonlinear optics and Bose-Einstein condensate. In this paper, in order to simplify the process of similar analysis with different forms of the coupled CQNLS equation, this dynamic system is extended to a time-space scale based on the Lax pair and zero curvature equation. Furthermore, Darboux transformation of the coupled CQNLS dynamic system on a time-space scale is constructed, and the N-soliton solution is obtained. These results effectively combine the theory of differential equations with difference equations and become a bridge connecting continuous and discrete analysis.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Symbolic computation on the bright soliton solutions for the generalized coupled nonlinear Schrodinger equations with cubic-quintic nonlinearity
    Wang, Pan
    Tian, Bo
    OPTICS COMMUNICATIONS, 2012, 285 (16) : 3567 - 3577
  • [22] Traveling-wave solutions of the cubic-quintic nonlinear Schrodinger equation
    Schurmann, HW
    PHYSICAL REVIEW E, 1996, 54 (04) : 4312 - 4320
  • [23] The coupled Boussinesq equation and its Darboux transformation on the time-space scale
    Huang, Xiaoqian
    Zhang, Yong
    Dong, Huanhe
    FRONTIERS IN PHYSICS, 2022, 10
  • [24] Analytical soliton solutions for the cubic-quintic nonlinear Schrodinger equation with Raman effect in the nonuniform management systems
    Wang, Ping
    Feng, Li
    Shang, Tao
    Guo, Lixin
    Cheng, Guanghua
    Du, Yingjie
    NONLINEAR DYNAMICS, 2015, 79 (01) : 387 - 395
  • [25] Eigenvalue cutoff in the cubic-quintic nonlinear Schrodinger equation
    Prytula, Vladyslav
    Vekslerchik, Vadym
    Perez-Garcia, Victor M.
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [26] Pseudorecurrence and chaos of cubic-quintic nonlinear Schrodinger equation
    Zhou, CT
    Lai, CH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (06): : 775 - 786
  • [27] QUASI-SOLITON AND OTHER BEHAVIOR OF THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION
    COWAN, S
    ENNS, RH
    RANGNEKAR, SS
    SANGHERA, SS
    CANADIAN JOURNAL OF PHYSICS, 1986, 64 (03) : 311 - 315
  • [28] Solitons and Scattering for the Cubic-Quintic Nonlinear Schrodinger Equation on
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) : 469 - 548
  • [29] Symbolic computation on soliton dynamics and Backlund transformation for the generalized coupled nonlinear Schrodinger equations with cubic-quintic nonlinearity
    Wang, Pan
    Tian, Bo
    JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1786 - 1796
  • [30] Solitons for the cubic-quintic nonlinear Schrodinger equation with time- and space-modulated coefficients
    Belmonte-Beitia, J.
    Cuevas, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (16)