Occurrence of exponential relaxation in closed quantum systems

被引:27
|
作者
Bartsch, Christian [1 ]
Steinigeweg, Robin [1 ]
Gemmer, Jochen [1 ]
机构
[1] Univ Osnabruck, Fachbereich Phys, D-49069 Osnabruck, Germany
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 01期
关键词
D O I
10.1103/PhysRevE.77.011119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the occurrence of exponential relaxation in a certain class of closed, finite systems on the basis of a time-convolutionless projection operator expansion for a specific class of initial states with vanishing inhomogeneity. It turns out that exponential behavior is to be expected only if the leading order predicts the standard separation of time scales and if, furthermore, all higher orders remain negligible for the full relaxation time. The latter, however, is shown to depend not only on the perturbation (interaction) strength, but also crucially on the structure of the perturbation matrix. It is shown that perturbations yielding exponential relaxation have to fulfill certain criteria, one of which relates to the so-called "Van Hove structure." All our results are verified by the numerical integration of the full time-dependent Schrodinger equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] RELAXATION PHENOMENA IN CLASSICAL AND QUANTUM SYSTEMS
    Spagnolo, B.
    Caldara, P.
    La Cognata, A.
    Augello, G.
    Valenti, D.
    Fiasconaro, A.
    Dubkov, A. A.
    Falci, G.
    ACTA PHYSICA POLONICA B, 2012, 43 (05): : 1169 - 1189
  • [32] RELAXATION OF QUANTUM SYSTEMS WITH EQUIDISTANT SPECTRA
    BELAVIN, AA
    ZELDOVIC.BY
    PERELOMO.AM
    POPOV, VS
    SOVIET PHYSICS JETP-USSR, 1969, 29 (01): : 145 - &
  • [33] Spin relaxation in quantum hall systems
    Apel, W
    Bychkov, YA
    PHYSICAL REVIEW LETTERS, 1999, 82 (16) : 3324 - 3327
  • [34] Quantum relaxation in open chaotic systems
    Frahm, KM
    PHYSICAL REVIEW E, 1997, 56 (06) : R6237 - R6240
  • [35] Relaxation in incompletely observed quantum systems
    Gemmer, Jochen
    MEETING THE ENTROPY CHALLENGE, 2008, 1033 : 170 - 173
  • [36] EXPONENTIAL RELAXATION IN TBFEO3 - A QUANTUM SURFACE NUCLEATION PROBLEM
    KROTENKO, EB
    TEJADA, J
    ZHANG, XX
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (26) : 5097 - 5104
  • [37] A nonlinear model for relaxation in excited closed physical systems
    Lemanska, M
    Jaeger, Z
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 170 (01) : 72 - 86
  • [38] STRETCHED EXPONENTIAL RELAXATION IN SYSTEMS WITH RANDOM FREE-ENERGIES
    DEDOMINICIS, C
    ORLAND, H
    LAINEE, F
    JOURNAL DE PHYSIQUE LETTRES, 1985, 46 (11): : L463 - L466
  • [39] STATISTICAL-MODEL FOR STRETCHED EXPONENTIAL RELAXATION IN MACROSCOPIC SYSTEMS
    HUBER, DL
    PHYSICAL REVIEW B, 1985, 31 (09): : 6070 - 6071
  • [40] KINETICS OF REDISTRIBUTION OF MICELLAR SIZES - SYSTEMS WITH EXPONENTIAL MONOMER RELAXATION
    ALMGREN, M
    ANIANSSON, EAG
    HOLMAKER, K
    CHEMICAL PHYSICS, 1977, 19 (01) : 1 - 16