Functional Concurrent Linear Regression Model for Spatial Images

被引:22
|
作者
Zhang, Jun [1 ]
Clayton, Murray K. [2 ]
Townsend, Philip A. [3 ]
机构
[1] Stat & Appl Math Sci Inst, Res Triangle Pk, NC 27709 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; LASSO; Regression models for spatial images; Remote sensing; Satellite images; Wavelet expansion; FOREST STAND SUSCEPTIBILITY; VARIABLE SELECTION; DEFOLIATION; SHRINKAGE; LASSO;
D O I
10.1007/s13253-010-0047-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by a problem in describing forest nitrogen cycling, in this paper we explore regression models for spatial images. Specifically, we present a functional concurrent linear model with varying coefficients for two-dimensional spatial images. To address overparameterization issues, the parameter surfaces in this model are transformed into the wavelet domain and a sparse representation is found by using a large-scale l (1) constrained least squares algorithm. Once the sparse representation is identified, an inverse wavelet transform is applied to obtain the estimated parameter surfaces. The optimal penalization term in the objective function is determined using the Bayesian Information Criterion (BIC) and we introduce measures of model quality. Our model is versatile and can be applied to both single and multiple replicate cases.
引用
收藏
页码:105 / 130
页数:26
相关论文
共 50 条
  • [31] A fuzzy functional linear regression model with functional predictors and fuzzy responses
    Hesamian, Gholamreza
    Akbari, Mohammad Ghasem
    SOFT COMPUTING, 2022, 26 (06) : 3029 - 3043
  • [32] On the local linear estimation of a generalized regression function with spatial functional data
    Saadaoui, Allal
    Benaissa, Fadila
    Chouaf, Abdelhak
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (21) : 7752 - 7779
  • [33] Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
    YU Ping
    ZHU Zhongyi
    SHI Jianhong
    AI Xikai
    Journal of Systems Science & Complexity, 2020, 33 (02) : 527 - 544
  • [34] Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
    Ping Yu
    Zhongyi Zhu
    Jianhong Shi
    Xikai Ai
    Journal of Systems Science and Complexity, 2020, 33 : 527 - 544
  • [35] Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
    Yu, Ping
    Zhu, Zhongyi
    Shi, Jianhong
    Ai, Xikai
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (02) : 527 - 544
  • [36] Rethinking the linear regression model for spatial ecological data: comment
    Emerson, Sarah
    Wickham, Charlotte
    Ruzicka, Kenneth J., Jr.
    ECOLOGY, 2015, 96 (07) : 2021 - 2025
  • [37] A Sparse Spatial Linear Regression Model for fMRI Data Analysis
    Oikonomou, Vangelis P.
    Blekas, Konstantinos
    ARTIFICIAL INTELLIGENCE: THEORIES, MODELS AND APPLICATIONS, PROCEEDINGS, 2010, 6040 : 203 - 212
  • [38] Rethinking the linear regression model for spatial ecological data: reply
    Wagner, Helene H.
    ECOLOGY, 2015, 96 (07) : 2026 - 2026
  • [39] Linear Regression Model and Spatial Autoregressive Model for Modeling High School Dropout
    Nugraha, Jaka
    Ali, Asriyanti
    3RD INTERNATIONAL SEMINAR ON CHEMICAL EDUCATION: TRENDS, APPLICATIONS, CHANGES IN CHEMICAL EDUCATION FOR THE 4.0 INDUSTRIAL REVOLUTION, 2020, 2229
  • [40] Local linear spatial regression
    Hallin, M
    Lu, ZD
    Tran, LT
    ANNALS OF STATISTICS, 2004, 32 (06): : 2469 - 2500