Feature preserving lossy image compression using nonlinear PDE's

被引:5
|
作者
Chan, TF [1 ]
Zhou, HM [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
来源
ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS VIII | 1998年 / 3461卷
关键词
D O I
10.1117/12.325724
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this report, we propose combining the Total Variation denoising method with the high loss wavelet compression for high noise level images. Numerical experiments show that TV-denoising can bring more wavelet coefficients closer to zero thereby making the compression more efficient while the salient features (edges) of the images can still be retained.
引用
收藏
页码:316 / 327
页数:12
相关论文
共 50 条
  • [41] Unsupervised Hierarchical SAR Image Segmentation Using Lossy Data Compression
    Akbarizadeh, Gholamreza
    Aleghafour, Marjan
    2015 7TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2015,
  • [42] Wavelet lossy image coding with edge and texture preserving using a modified SPIHT
    Pinto Elias, Raul
    Vergara Villegas, Osslan O.
    Lopez Sanchez, Maximo
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 1763 - 1766
  • [43] Lossy compression for PDE-constrained optimization: adaptive error control
    Goetschel, Sebastian
    Weiser, Martin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (01) : 131 - 155
  • [44] Multiscale method for feature preserving compression
    Tari, S
    Liang, P
    NONLINEAR IMAGE PROCESSING IX, 1998, 3304 : 316 - 322
  • [45] Lossy compression for PDE-constrained optimization: adaptive error control
    Sebastian Götschel
    Martin Weiser
    Computational Optimization and Applications, 2015, 62 : 131 - 155
  • [46] Comparison on accuracy of image matching between lossy JPEG compression and lossy JPEG 2000 compression
    Matsuoka, Ryuji
    Sone, Mitsuo
    Sudo, Noboru
    Yokotsuka, Hideyo
    Shirai, Naoki
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIX, 2013, 8892
  • [47] What is wrong with compression ratio in lossy image compression? - Reply
    Ringl, Helmut Rupert
    RADIOLOGY, 2007, 245 (01) : 299 - 300
  • [48] Preserving radiometric resolution in remotely sensed data with lossy compression
    Tilton, JC
    Manohar, M
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (05): : 1171 - 1176
  • [49] Lossy Intermediate Deep Learning Feature Compression and Evaluation
    Chen, Zhuo
    Fan, Kui
    Wang, Shiqi
    Duan, Ling-Yu
    Lin, Weisi
    Kot, Alex C.
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2414 - 2422
  • [50] Deep Generative Models for Distribution-Preserving Lossy Compression
    Tschannen, Michael
    Agustsson, Eirikur
    Lucic, Mario
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31