A Framework for Embedded Model Predictive Control using Posits

被引:0
|
作者
Jugade, Chaitanya [1 ]
Ingole, Deepak [2 ,3 ]
Sonawane, Dayaram [1 ]
Kvasnica, Michal [4 ]
Gustafson, John [5 ]
机构
[1] Coll Engn, Pune 411005, Shivajinagar, India
[2] Univ Gustave Eiffel, Univ Lyon, LICIT, ENTPE, Lyon, France
[3] Katholieke Univ Leuven, Dept Mech Engn, Leuven, Belgium
[4] Slovak Univ Technol Bratislava, Bratislava, Slovakia
[5] Natl Univ Singapore, Singapore, Singapore
基金
欧盟地平线“2020”;
关键词
Linear MPC; optimization; embedded systems; floating-point numbers; posit numbers; hardware implementation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a framework for the high-accuracy, low-precision, and memory-efficient embedded model predictive control (MPC) using the posit (TM) numbers and its implementation on the ARM-based embedded platform. A quadratic programming (QP) problem in posit-based linear MPC is solved by the active set method (ASM) with a Cholesky factorization-based linear solver. The main idea of this paper is to encode all data associated with the QP problem as posit numbers and employ posit number arithmetic to synthesis the ASM algorithm. We provide a detailed analysis of a posit number that acts as a memory-efficient replacement of the IEEE 754 floating-point standard numbers. We show the posit-based ASM algorithm employed in MPC and its implementation on STM32 Nucleo-144 development board with STM32F746ZG MCU. The results of hardware-in-loop (HIL) simulations with the detailed analysis of memory utilization and performance of the posit-based ASM algorithm is shown with two case studies. HIL results show that the proposed approach can reduce memory footprints by 50% to 75% without losing control accuracy and performance.
引用
收藏
页码:2509 / 2514
页数:6
相关论文
共 50 条
  • [1] Memory-Efficient Explicit Model Predictive Control using Posits
    Jugade, Chaitanya
    Ingole, Deepak
    Sonawane, Dayaram
    Kvasnica, Michal
    Gustafson, John
    2019 SIXTH INDIAN CONTROL CONFERENCE (ICC), 2019, : 188 - 193
  • [2] Dynamically Embedded Model Predictive Control
    Nicotra, Marco M.
    Liao-McPherson, Dominic
    Kolmanovsky, Ilya, V
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 4957 - 4962
  • [3] An integrated framework for scheduling and control using fast model predictive control
    Zhuge, Jinjun
    Ierapetritou, Marianthi G.
    AICHE JOURNAL, 2015, 61 (10) : 3304 - 3319
  • [4] Embedded nonlinear model predictive control for obstacle avoidance using PANOC
    Sathya, Ajay
    Sopasakis, Pantelis
    Van Parys, Ruben
    Themelis, Andreas
    Pipeleers, Goele
    Patrinos, Panagiotis
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 1523 - 1528
  • [5] Automatic Deployment of Industrial Embedded Model Predictive Control using qpOASES
    Kufoalor, D. K. M.
    Binder, B. J. T.
    Ferreau, H. J.
    Imsland, L.
    Johansen, T. A.
    Diehl, M.
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 2601 - 2608
  • [6] MIMO predictive control with constraints by using an embedded knowledge based model
    Pages, JC
    Compas, JM
    Sau, J
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 3902 - 3907
  • [7] A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC)
    Tobias Englert
    Andreas Völz
    Felix Mesmer
    Sönke Rhein
    Knut Graichen
    Optimization and Engineering, 2019, 20 : 769 - 809
  • [8] A software framework for embedded nonlinear model predictive control using a gradient-based augmented Lagrangian approach (GRAMPC)
    Englert, Tobias
    Voelz, Andreas
    Mesmer, Felix
    Rhein, Soenke
    Graichen, Knut
    OPTIMIZATION AND ENGINEERING, 2019, 20 (03) : 769 - 809
  • [9] Embedded Position Control of Permanent Magnet Synchronous Motor Using Model Predictive Control
    Ramelan, Agus
    Rohman, Arief Syaichu
    Kelana, Allen
    2018 ASIA CONFERENCE ON MECHANICAL ENGINEERING AND AEROSPACE ENGINEERING (MEAE 2018), 2018, 198
  • [10] Embedded explicit model predictive vibration control
    Takacs, Gergely
    Batista, Gabriel
    Gulan, Martin
    Rohal'-Ilkiv, Boris
    MECHATRONICS, 2016, 36 : 54 - 62