Automatic Deployment of Industrial Embedded Model Predictive Control using qpOASES

被引:0
|
作者
Kufoalor, D. K. M. [1 ]
Binder, B. J. T. [1 ]
Ferreau, H. J. [3 ]
Imsland, L. [1 ]
Johansen, T. A. [1 ,2 ]
Diehl, M. [4 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Engn Cybernet, OS Bragstads Plass 2D, N-7491 Trondheim, Norway
[2] NTNU, Ctr Autonomous Marine Operat & Syst, Trondheim, Norway
[3] ABB Corp Res, CH-5405 Baden, Switzerland
[4] Univ Freiburg, Inst Microsyst Engn IMTEK, Freiburg, Germany
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Different high-speed quadratic programming (QP) solvers are incorporated into an ANSI C code generation framework for embedded Model Predictive Control (MPC). The controllers developed are based on step response (linear) models and design configurations obtained from SEPTIC, Statoil's software tool for MPC applications. In order to achieve high online computational efficiency, offline computations/preparations are made at the code generation stage, and appropriate problem data are used in the QP solvers. We discuss implementation aspects arising when running an embedded MPC controller on an industrial PLC and present results of hardware-in-theloop simulation tests for two challenging industrial applications. The results indicate that the online active-set strategy as implemented in the software package qpOASES exhibits superior performance compared to both a tailored interior-point method and a primal-dual first-order method for the step response class of models considered in this paper.
引用
收藏
页码:2601 / 2608
页数:8
相关论文
共 50 条
  • [1] Survey of industrial applications of embedded model predictive control
    Ferreau, Hans Joachim
    Aimer, Stefan
    Peyrl, Helfried
    Jerez, Juan Luis
    Domahidi, Alexander
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 601 - 601
  • [2] Efficient Quadratic Programming Frameworks for Industrial Embedded Model Predictive Control
    Kufoalor, D. K. M.
    Imsland, L.
    Johansen, T. A.
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 602 - 602
  • [3] A Framework for Embedded Model Predictive Control using Posits
    Jugade, Chaitanya
    Ingole, Deepak
    Sonawane, Dayaram
    Kvasnica, Michal
    Gustafson, John
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 2509 - 2514
  • [4] Embedded Optimization Methods for Industrial Automatic Control
    Ferreau, H. J.
    Almer, S.
    Verschueren, R.
    Diehl, M.
    Frick, D.
    Domahidi, A.
    Jerez, J. L.
    Stathopoulos, G.
    Jones, C.
    IFAC PAPERSONLINE, 2017, 50 (01): : 13194 - 13209
  • [5] A Flexible Low Cost Embedded System for Model Predictive Control of Industrial Processes
    Lima, Daniel M.
    Americano da Costa, Marcus V.
    Normey-Rico, Julio E.
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1571 - 1576
  • [6] Industrial Embedded Model Predictive Controller Platform
    Wenger, Monika
    Hametner, Reinhard
    Zoitl, Alois
    Voigt, Andreas
    2011 IEEE 16TH CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2011,
  • [7] A formulation of nonlinear model predictive control using automatic differentiation
    Cao, Y
    JOURNAL OF PROCESS CONTROL, 2005, 15 (08) : 851 - 858
  • [8] Automatic Snake Gait Generation Using Model Predictive Control
    Hannigan, Emily
    Song, Bing
    Khandate, Gagan
    Haas-Heger, Maximilian
    Yin, Ji
    Ciocarlie, Matei
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 5101 - 5107
  • [9] Dynamically Embedded Model Predictive Control
    Nicotra, Marco M.
    Liao-McPherson, Dominic
    Kolmanovsky, Ilya, V
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 4957 - 4962
  • [10] Automatically generated embedded model predictive control: Moving an industrial PC-based MPC to an embedded platform
    Kufoalor, D. K. M.
    Aaker, V.
    Johansen, T. A.
    Imsland, L.
    Eikrem, G. O.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (05): : 705 - 727