Space Target Anomaly Detection Based on Gaussian Mixture Model and Micro-Doppler Features

被引:8
|
作者
Wang, Jianwen [1 ]
Li, Gang [1 ]
Zhao, Zhichun [2 ]
Jiao, Jian [1 ]
Ding, Shuai [3 ]
Wang, Kunpeng [4 ]
Duan, Meiya [4 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Shenzhen MSU BIT Univ, Dept Engn, Shenzhen 518172, Peoples R China
[3] China Elect Technol Grp Corp, Res Inst 38, Hefei 230088, Peoples R China
[4] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Spaceborne radar; Radar; Satellites; Anomaly detection; Space vehicles; Radar cross-sections; Gaussian mixture model (GMM); micro-Doppler; space target; CLASSIFICATION;
D O I
10.1109/TGRS.2022.3213277
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the dramatic increase in human space activities, anomaly detection becomes an important issue in passive space target surveillance. In this article, an anomaly detection algorithm based on the Gaussian mixture model (GMM) and radar micro-Doppler features is proposed to detect the abnormal motion status of the space target. By coherent sampling and time-frequency (TF) analysis on the radar echo with additive white Gaussian noise (AWGN) corresponding to the normal motion statuses of the target, four micro-Doppler features are extracted and tested for normal distribution. Furthermore, the distribution of the multidimensional features and the corresponding parameters are fit and estimated by the GMM and expectation-maximization (EM) algorithm. Then, an anomaly detector is derived by solving for the decision region using the fit probability density function (pdf) and a preset confidence level. Experimental results show that the average anomaly detection rate of the proposed method is 16.7%, 19.1%, and 34.0% higher than the one-class support vector machine (OCSVM), the convex hull, and the convolutional autoencoder (CAE)-based methods, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] IoT Anomaly Detection Based on Autoencoder and Bayesian Gaussian Mixture Model
    Hou, Yunyun
    He, Ruiyu
    Dong, Jie
    Yang, Yangrui
    Ma, Wei
    ELECTRONICS, 2022, 11 (20)
  • [22] A Network Traffic Anomaly Detection Method Based on Gaussian Mixture Model
    Yu, Bin
    Zhang, Yongzheng
    Xie, Wenshu
    Zuo, Wenjia
    Zhao, Yiming
    Wei, Yuliang
    ELECTRONICS, 2023, 12 (06)
  • [23] Moving Target Detection Algorithm Based on Gaussian Mixture Model
    Wang, Zhihua
    Kai, Du
    Zhang, Xiandong
    FIFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2013), 2013, 8878
  • [24] Target Classification and Recognition Based on Micro-doppler Radar Signatures
    Li, Wenchao
    Xiong, Boli
    Kuang, Gangyao
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 1679 - 1684
  • [25] Target Detection Algorithm Based on Improved Gaussian Mixture Model
    Wang, Xiaomeng
    Zhao, Dequn
    Sun, Guangmin
    Liu, Xingwang
    Wu, Yanli
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015), 2015, 24 : 846 - 850
  • [26] Recognition of Approximate Motions of Human Based on Micro-Doppler Features
    Wang, Ziqian
    Ren, Aifeng
    Zhang, Qi
    Zahid, Adnan
    Abbasi, Qammer H.
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 12388 - 12397
  • [27] Target Detection and Classification of Small Drones by Boosting on Radar Micro-Doppler
    Bjorklund, Svante
    2018 15TH EUROPEAN RADAR CONFERENCE (EURAD), 2018, : 182 - 185
  • [28] Micro-Doppler Gesture Recognition using Doppler, Time and Range Based Features
    Ritchie, Matthew
    Jones, Aaron M.
    2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,
  • [29] Micro-Doppler features based parameter estimation and identification of tank
    Huang J.
    Li X.
    Huang X.-T.
    He F.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2010, 32 (05): : 1050 - 1055
  • [30] Micro Drone Detection and Parameters Estimation Based on Micro-Doppler of Blades
    Fang, Xin
    Lu, Chuan
    Zhang, Ming
    Min, Rui
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 472 - 478