Improved Cycling Stability of LiNi0.8Co0.1Mn0.1O2 Cathode Material via Variable Temperature Atomic Surface Reduction with Diethyl Zinc

被引:20
|
作者
Saha, Arka [1 ,2 ]
Taragin, Sarah [1 ,2 ]
Rosy
Maiti, Sandipan [1 ,2 ]
Kravchuk, Tatyana [3 ]
Leifer, Nicole [1 ,2 ]
Tkachev, Maria [1 ,2 ]
Noked, Malachi [1 ,2 ]
机构
[1] Bar Ilan Univ, Dept Chem, Ramat Gan, Israel
[2] Bar Ilan Inst Nanotechnol & Adv Mat, Ramat Gan, Israel
[3] Technion Israel Inst Technol, Solid State Inst, Surface Sci Lab, IL-5290002 Haifa, Israel
关键词
atomic layer deposition; atomic surface reduction; Li-ion batteries; near surface doping; Ni-rich NMC cathodes; TRANSITION-METAL OXIDE; NI-RICH; ELECTROLYTE ADDITIVES; LAYER DEPOSITION; LITHIUM; CAPACITY; PERFORMANCE; MECHANISMS; LIMN2O4; NMC;
D O I
10.1002/smll.202104625
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-Ni-rich layered oxides [e.g., LiNixCoyMnzO2; x > 0.5, x + y + z = 1] are considered one of the most promising cathodes for high-energy-density lithium-ion batteries (LIB). However, extreme electrode-electrolyte reactions, several interfacial issues, and structural instability restrict their practical applicability. Here, a shortened unconventional atomic surface reduction (ASR) technique is demonstrated on the cathode surface as a derivative of the conventional atomic layer deposition (ALD) process, which brings superior cell performances. The atomic surface reaction (reduction process) between diethyl-zinc (as a single precursor) and Ni-rich NMC cathode [LiNi0.8Co0.1Mn0.1O2; NCM811] material is carried out using the ALD reactor at different temperatures. The temperature dependency of the process through advanced spectroscopy and microscopy studies is demonstrated and it is shown that thin surface film is formed at 100 degrees C, whereas at 200 degrees C a gradual atomic diffusion of Zn ions from the surface to the near-surface regions is taking place. This unique near-surface penetration of Zn ions significantly improves the electrochemical performance of the NCM811 cathode. This approach paves the way for utilizing vapor phase deposition processes to achieve both surface coatings and near-surface doping in a single reactor to stabilize high-energy cathode materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method
    Li Ling-jun
    Li Xin-hai
    Wang Zhi-xing
    Wu Ling
    Zheng Jun-chao
    Li Jin-hui
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 : S279 - S282
  • [22] Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2
    Li, Xiang-qun
    Xiong, Xun-hui
    Wang, Zhi-xing
    Chen, Qi-yuan
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (12) : 4023 - 4029
  • [23] Thermal stability and reduction mechanism of LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Co0.2Mn0.3O2 cathode materials studied by a Temperature Programmed Reduction
    Yeon, Seon-Young
    Umirov, Nurzhan
    Lim, Seong-Hyeon
    Bakenov, Zhumabay
    Kim, Jun-Sik
    Kim, Sung-Soo
    THERMOCHIMICA ACTA, 2021, 706
  • [24] Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole
    Xiong, Xunhui
    Ding, Dong
    Wang, Zhixing
    Huang, Bin
    Guo, Huajun
    Li, Xinhai
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (09) : 2619 - 2624
  • [25] Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole
    Xunhui Xiong
    Dong Ding
    Zhixing Wang
    Bin Huang
    Huajun Guo
    Xinhai Li
    Journal of Solid State Electrochemistry, 2014, 18 : 2619 - 2624
  • [26] Temperature-responsive coating endowing LiNi0.8Co0.1Mn0.1O2 cathode materials with improved cycling stability and overheating self-protection function
    Li, Tengfei
    Wang, Lihua
    Li, Jian
    CHEMICAL ENGINEERING JOURNAL, 2022, 434
  • [27] Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries
    Huang, Yue
    Wang, Zhi-xing
    Li, Xin-hai
    Guo, Hua-jun
    Wang, Jie-xi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (07) : 2253 - 2259
  • [28] Investigations on synthesis and electrochemical performance of high performance LiNi0.8Co0.1Mn0.1O2 cathode material
    Cai H.
    Yuan A.
    Feng R.
    Deng Y.
    Tang H.
    Tan L.
    Sun R.
    Tan, Long (tgoodenough@ncu.edu.cn), 1882, Beijing University of Aeronautics and Astronautics (BUAA) (38): : 1882 - 1889
  • [29] Improving the single crystal LiNi0.8Co0.1Mn0.1O2 cathode material performance by fluorine doping
    Zhang, Pengfei
    Liu, Zhaofeng
    Ma, Ben
    Li, Ping
    Zhou, Yingke
    Tian, Xiaohui
    CERAMICS INTERNATIONAL, 2021, 47 (23) : 33843 - 33852
  • [30] Silver Nanocoating of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Li, Xintong
    Chang, Kai
    Abbas, Somia M.
    El-Tawil, Rasha S.
    Abdel-Ghany, Ashraf E.
    Hashem, Ahmed M.
    Wang, Hua
    Coughlin, Amanda L.
    Zhang, Shixiong
    Mauger, Alain
    Zhu, Likun
    Julien, Christian M.
    MICROMACHINES, 2023, 14 (05)