Bidirectional handshaking LSTM for remaining useful life prediction

被引:185
|
作者
Elsheikh, Ahmed [1 ,2 ]
Yacout, Soumaya [3 ]
Ouali, Mohamed-Salah [3 ]
机构
[1] Univ Polytech Montreal, Dept Math & Ind Engn, Montreal, PQ, Canada
[2] Cairo Univ, Fac Engn, Dept Math & Engn Phys, Giza, Egypt
[3] Ecole Polytech Montreal, Dept Math & Ind Engn, Montreal, PQ, Canada
关键词
Remaining useful life prediction; Bidirectional handshaking; Long Short-Term Memory; Asymmetric objective function; Target generation; PROGNOSTICS; CHALLENGES; SYSTEMS; ISSUES; MODEL;
D O I
10.1016/j.neucom.2018.09.076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unpredictable failures and unscheduled maintenance of physical systems increases production resources, produces more harmful waste for the environment, and increases system life cycle costs. Efficient remaining useful life (RUL) estimation can alleviate such an issue. The RUL is predicted by making use of the data collected from several types of sensors that continuously record different indicators about a working asset, such as vibration intensity or exerted pressure. This type of continuous monitoring data is sequential in time, as it is collected at a certain rate from the sensors during the asset's work. Long Short-Term Memory (LSTM) neural network models have been demonstrated to be efficient throughout the literature when dealing with sequential data because of their ability to retain a lot of information over time about previous states of the system. This paper proposes using a new LSTM architecture for predicting the RUL when given short sequences of monitored observations with random initial wear. By using LSTM, this paper proposes a new objective function that is suitable for the RUL estimation problem, as well as a new target generation approach for training LSTM networks, which requires making lesser assumptions about the actual degradation of the system. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 156
页数:9
相关论文
共 50 条
  • [21] REMAINING USEFUL LIFE PREDICTION OF WIND TURBINE BLADES BASED ON OPTIMIZED LSTM MODEL
    Jiao J.
    Bi J.
    Ge X.
    Wang G.
    Ma H.
    Zhou D.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 495 - 502
  • [22] Prediction of remaining useful life based on t-SNE and LSTM for rotating machinery
    Ge, Yang
    Guo, Lanzhong
    Niu, Shuguang
    Dou, Yan
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (07): : 223 - 231
  • [23] Remaining Useful Life Prediction of Aero-Engine Based on PCA-LSTM
    Li, Hao
    Wang, Zhuojian
    Li, Yuan
    Li, Zhe
    PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 63 - 66
  • [24] Attention-Based LSTM Network for Rotatory Machine Remaining Useful Life Prediction
    Zhang, Hao
    Zhang, Qiang
    Shao, Siyu
    Niu, Tianlin
    Yang, Xinyu
    IEEE ACCESS, 2020, 8 (08): : 132188 - 132199
  • [25] Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM
    Sun, Bo
    Hu, Wenting
    Wang, Hao
    Wang, Lei
    Deng, Chengyang
    SENSORS, 2025, 25 (02)
  • [26] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Jingna Liu
    Rujiang Hao
    Qiang Liu
    Wenwu Guo
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1567 - 1578
  • [27] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Liu, Jingna
    Hao, Rujiang
    Liu, Qiang
    Guo, Wenwu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1567 - 1578
  • [28] Remaining Useful Life Prediction Based on Improved LSTM Hybrid Attention Neural Network
    Xu, Mang
    Bai, Yunyi
    Qian, Pengjiang
    INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, 13395 : 709 - 718
  • [29] Remaining useful life prediction for equipment based on LSTM encoder-decoder method
    Zhao Z.-H.
    Li Q.
    Li L.-H.
    Zhao J.-J.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2021, 21 (06): : 269 - 277
  • [30] Rolling Bearing Remaining Useful Life Prediction Based on LSTM-Transformer Algorithm
    Tang, Xinglu
    Xi, Hui
    Chen, Qianqian
    Lin, Tian Ran
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 207 - 215