Deep learning model for distributed denial of service (DDoS) detection

被引:0
|
作者
Tennakoon, Chaminda [1 ]
Fernando, Subha [2 ]
机构
[1] Informat Inst Technol, Dept Comp, Colombo, Sri Lanka
[2] Univ Moratuwa, Dept Computat Math, Moratuwa, Sri Lanka
关键词
Application-layer; DDoS detection autoencoder; Deep learning models; Cybersecurity; ATTACKS;
D O I
10.21833/ijaas.2022.02.012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Distributed denial of service (DDoS) attacks is one of the serious threats in the domain of cybersecurity where it affects the availability of online services by disrupting access to its legitimate users. The consequences of such attacks could be millions of dollars in worth since all of the online services are relying on high availability. The magnitude of DDoS attacks is ever increasing as attackers are smart enough to innovate their attacking strategies to expose vulnerabilities in the intrusion detection models or mitigation mechanisms. The history of DDoS attacks reflects that network and transport layers of the OSI model were the initial target of the attackers, but the recent history from the cybersecurity domain proves that the attacking momentum has shifted toward the application layer of the OSI model which presents a high degree of difficulty distinguishing the attack and benign traffics that make the combat against application-layer DDoS attack a sophisticated task. Striding for high accuracy with high DDoS classification recall is key for any DDoS detection mechanism to keep the reliability and trustworthiness of such a system. In this paper, a deep learning approach for application-layer DDoS detection is proposed by using an autoencoder to perform the feature selection and Deep neural networks to perform the attack classification. A popular benchmark dataset CIC DoS 2017 is selected by extracting the most appealing features from the packet flows. The proposed model has achieved an accuracy of 99.83% with a detection rate of 99.84% while maintaining the false-negative rate of 0.17%, which has the heights accuracy rate among the literature reviewed so far. (C) 2022 The Authors. Published by IASE.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
  • [11] Distributed denial-of-service (DDOS) attack detection using supervised machine learning algorithms
    S. Abiramasundari
    V. Ramaswamy
    Scientific Reports, 15 (1)
  • [12] Detecting Distributed Denial of Service (DDoS) attacks through inductive learning
    Noh, S
    Lee, C
    Choi, K
    Jung, GH
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 286 - 295
  • [13] The Design of SDN based Detection for Distributed Denial of Service (DDoS) attack
    Oo, Myo Myint
    Kamolphiwong, Sinchai
    Kamolphiwong, Thossaporn
    2017 21ST INTERNATIONAL COMPUTER SCIENCE AND ENGINEERING CONFERENCE (ICSEC 2017), 2017, : 258 - 263
  • [14] A Comprehensive Review of Deep Learning Techniques for the Detection of (Distributed ) Denial of Service Attacks
    Malliga, S.
    Nandhini, P. S.
    Kogilavani, S. V.
    INFORMATION TECHNOLOGY AND CONTROL, 2022, 51 (01): : 180 - 215
  • [15] Survey on distributed denial of service attack detection using deep learning: A review
    Jassem, Manal Dawood
    Abdulrahman, Amer Abdulmajeed
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 753 - 762
  • [16] DISTRIBUTED DENIAL OF SERVICE (DDOS) NETWORK ATTACKS: IMPACT ON THE VIRTUAL LEARNING ENVIRONMENT
    Atayero, A. A.
    Oshin, O. I.
    Oshin, B. O.
    Alatishe, A. S.
    ICERI2014: 7TH INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION, 2014, : 2235 - 2240
  • [17] Detection of Distributed Denial of Service (DDoS) Attacks Using Artificial Intelligence on Cloud
    Alzahrani, Saba
    Hong, Liang
    2018 IEEE WORLD CONGRESS ON SERVICES (IEEE SERVICES 2018), 2018, : 35 - 36
  • [18] Retraction Note to: Detection of distributed denial of service using deep learning neural network
    S. Sumathi
    N. Karthikeyan
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (Suppl 1) : 287 - 287
  • [19] RETRACTED ARTICLE: Detection of distributed denial of service using deep learning neural network
    S. Sumathi
    N. Karthikeyan
    Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 5943 - 5953
  • [20] Developing Realistic Distributed Denial of Service (DDoS) Dataset for Machine Learning-based Intrusion Detection System
    Hadi, Hassan Jalil
    Hayat, Umer
    Musthaq, Numan
    Hussain, Faisal Bashir
    Cao, Yue
    2022 9TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS: SYSTEMS, MANAGEMENT AND SECURITY, IOTSMS, 2022, : 212 - 217