Riemann-Hilbert problems and soliton solutions for a multi-component cubic-quintic nonlinear Schrodinger equation

被引:12
|
作者
Zhang, Yong [1 ]
Dong, Huan-He [1 ]
Wang, Deng-Shan [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Multi-component cubic-quintic nonlinear; Schrodinger equation; Integrable hierarchy; Riemann-Hilbert problem; Soliton solution; INVERSE SCATTERING TRANSFORM; SEMIDIRECT SUMS; MKDV SYSTEM; INTEGRABILITY; EVOLUTION; WAVES;
D O I
10.1016/j.geomphys.2019.103569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the zero curvature equation, an arbitrary order matrix spectral problem is studied and its associated multi-component cubic-quintic nonlinear Schrodinger integrable hierarchy is derived. In order to solve the multi-component cubic-quintic nonlinear Schrodinger system, a class of Riemann-Hilbert problem is proposed with appropriate transformation. Through the special Riemann-Hilbert problem, where the jump matrix is considered to be an identity matrix, the soliton solutions of all integrable equations are explicitly calculated. The specific examples of one-soliton, two-soliton and N-soliton solutions are explicitly presented. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Multi-soliton solutions for the coupled modified nonlinear Schrodinger equations via Riemann-Hilbert approach
    Kang, Zhou-Zheng
    Xia, Tie-Cheng
    Ma, Xi
    CHINESE PHYSICS B, 2018, 27 (07)
  • [42] The N-coupled higher-order nonlinear Schrodinger equation: Riemann-Hilbert problem and multi-soliton solutions
    Yang, Jin-Jie
    Tian, Shou-Fu
    Peng, Wei-Qi
    Zhang, Tian-Tian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2458 - 2472
  • [43] The Soliton Solutions for Nonlocal Multi-Component Higher-Order Gerdjikov-Ivanov Equation via Riemann-Hilbert Problem
    Liu, Jinshan
    Dong, Huanhe
    Fang, Yong
    Zhang, Yong
    FRACTAL AND FRACTIONAL, 2024, 8 (03)
  • [44] The pair-transition-coupled nonlinear Schrodinger equation: The Riemann-Hilbert problem and N-soliton solutions
    Wang, Xiu-Bin
    Han, Bo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (02):
  • [45] Analytical spatiotemporal soliton solutions to (3+1)-dimensional cubic-quintic nonlinear Schrodinger equation with distributed coefficients
    Kumar, Hitender
    Malik, Anand
    Chand, Fakir
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
  • [46] Dynamics of cubic-quintic nonlinear Schrodinger equation with different parameters
    Hua, Wei
    Liu, Xue-Shen
    Liu, Shi-Xing
    CHINESE PHYSICS B, 2016, 25 (05)
  • [47] RIEMANN-HILBERT PROBLEMS AND SOLITON SOLUTIONS FOR THE COMPLEX MODIFIED SHORT PULSE EQUATION
    Zhou, Xuan
    Fan, Engui
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (02) : 145 - 159
  • [48] Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients
    Chen Yuan-Ming
    Ma Song-Hua
    Ma Zheng-Yi
    CHINESE PHYSICS B, 2012, 21 (05)
  • [49] On vortex and dark solitons in the cubic-quintic nonlinear Schrodinger equation
    Paredes, Angel
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 437
  • [50] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32