Approximation properties of the Generalized Finite Element Method

被引:4
|
作者
Anitescu, C. [1 ]
Banerjee, U. [1 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
关键词
Generalized finite element method; Partition of unity; Approximation; Quasi-interpolation; Error estimates; PARTITION;
D O I
10.1007/s10444-010-9159-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have obtained an approximation result in the Generalized Finite Element Method (GFEM) that reflects the global approximation property of the Partition of Unity (PU) as well as the approximability of the local approximation spaces. We have considered a GFEM, where the underlying PU functions reproduce polynomials of degree l. With the space of polynomials of degree k serving as the local approximation spaces of the GFEM, we have shown, in particular, that the energy norm of the GFEM approximation error of a smooth function is O(h (l + k) ). This result cannot be obtained from the classical approximation result of GFEM, which does not reflect the global approximation property of the PU.
引用
收藏
页码:369 / 390
页数:22
相关论文
共 50 条
  • [42] A super-localized generalized finite element method
    Freese, Philip
    Hauck, Moritz
    Keil, Tim
    Peterseim, Daniel
    NUMERISCHE MATHEMATIK, 2024, 156 (01) : 205 - 235
  • [43] A weak Galerkin generalized multiscale finite element method
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 68 - 81
  • [44] Higher order stable generalized finite element method
    Qinghui Zhang
    Uday Banerjee
    Ivo Babuška
    Numerische Mathematik, 2014, 128 : 1 - 29
  • [45] A NONCONFORMING GENERALIZED FINITE ELEMENT METHOD FOR TRANSMISSION PROBLEMS
    Mazzucato, Anna L.
    Nistor, Victor
    Qu, Qingqin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 555 - 576
  • [46] A mixed multiscale spectral generalized finite element method
    Alber, Christian
    Ma, Chupeng
    Scheichl, Robert
    NUMERISCHE MATHEMATIK, 2025, 157 (01) : 1 - 40
  • [47] GENERALIZED VARIATIONAL PRINCIPLES IN FINITE-ELEMENT METHOD
    GREENE, BE
    JONES, RE
    MCLAY, RW
    STROME, DR
    AIAA JOURNAL, 1969, 7 (07) : 1254 - &
  • [48] A mixed finite element method for the generalized Stokes problem
    Bustinza, R
    Gatica, GN
    González, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 49 (08) : 877 - 903
  • [49] Dispersion Analysis in Scalar Generalized Finite Element Method
    Tuncer, O.
    Nair, N.
    Shanker, B.
    Kempel, L. C.
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 3190 - 3193
  • [50] Geometrically nonlinear analysis by the generalized finite element method
    Gomes, Lorena Leocadio
    Barros, Felicio Bruzzi
    Penna, Samuel Silva
    Pitangueira, Roque Luiz da Silva
    ENGINEERING COMPUTATIONS, 2021, 38 (01) : 266 - 288