Minimization of a Function of a Quadratic Functional with Application to Optimal Portfolio Selection

被引:8
|
作者
Landsman, Zinoviy [1 ]
Makov, Udi [1 ]
机构
[1] Univ Haifa, Haifa, Israel
关键词
Minimization; Function of quadratic functional; Portfolio selection; Linear constraints; Tail variance; ROOT;
D O I
10.1007/s10957-015-0856-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an explicit closed-form solution to the problem of minimizing the combination of linear functional and a function of quadratic functional, subject to a system of affine constraints. This is of interest for solving important problems in financial economics related to optimal portfolio selection. The new results essentially generalize previous results of the authors concerning optimal portfolio selection with translation invariant and positive homogeneous risk measures. The classical mean-variance model and the recently introduced and investigated tail mean-variance model are special cases of the problem discussed here.
引用
收藏
页码:308 / 322
页数:15
相关论文
共 50 条
  • [41] MINIMIZATION OF AN INDEFINITE QUADRATIC FUNCTION WITH LINEAR CONSTRAINTS
    ANAND, P
    SWARUP, K
    EKONOMICKO-MATEMATICKY OBZOR, 1970, 6 (04): : 380 - 388
  • [42] On minimization of a quadratic function with one negative eigenvalue
    Ilya Minarchenko
    Oleg Khamisov
    Optimization Letters, 2021, 15 : 1447 - 1455
  • [43] MINIMIZATION OF A QUADRATIC PSEUDO-BOOLEAN FUNCTION
    BILLIONNET, A
    SUTTER, A
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1994, 78 (01) : 106 - 115
  • [44] On minimization of a quadratic function with one negative eigenvalue
    Minarchenko, Ilya
    Khamisov, Oleg
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1447 - 1455
  • [45] Nonconvex Minimization of a Quadratic Function over a Sphere
    Kotel'nikov, E. A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2015, 8 (02) : 135 - 147
  • [46] Minimization of risk and linear quadratic optimal control theory
    Kohlmann, M
    Tang, SJ
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (03) : 1118 - 1142
  • [47] HEURISTIC PARAMETER SELECTION BASED ON FUNCTIONAL MINIMIZATION: OPTIMALITY AND MODEL FUNCTION APPROACH
    Lu, Shuai
    Mathe, Peter
    MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1609 - 1630
  • [48] Minimization of risks in pension funding by means of contributions and portfolio selection
    Josa-Fombellida, R
    Rincón-Zapatero, JP
    INSURANCE MATHEMATICS & ECONOMICS, 2001, 29 (01): : 35 - 45
  • [49] A new optimal portfolio selection strategy based on a quadratic form mean-variance model with transaction costs
    Peng, Hui
    Kitagawa, Genshiro
    Gan, Min
    Chen, Xiaohong
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2011, 32 (02): : 127 - 138
  • [50] Minimization of Quadratic Binary Functional with Additive Connection Matrix
    Litinskii, Leonid
    ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT I, 2009, 5768 : 161 - 170