Zero-viscosity-capillarity limit to the planar rarefaction wave for the 2D compressible Navier-Stokes-Korteweg equations

被引:4
|
作者
Yin, Rong [1 ]
Li, Yeping [1 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Planar rarefaction wave; Compressible; Navier-Stokes-Korteweg equations; Zero-viscosity-capillarity limit; Energy estimate; FLUID MODELS; DISSIPATION LIMIT; GLOBAL EXISTENCE; EULER EQUATIONS; INVISCID LIMIT; STABILITY; SYSTEMS; VACUUM;
D O I
10.1016/j.nonrwa.2022.103685
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall consider the two-dimensional (2D) isentropic Navier-Stokes-Korteweg equations which are used to model compressible fluids with internal capillarity. Formally, the 2D isentropic Navier-Stokes-Korteweg equations converge, as the viscosity and the capillarity vanish, to the corresponding 2D inviscid Euler equations, and we do justify this for the case that the corresponding 2D inviscid Euler equations admit a planar rarefaction wave solution. More precisely, it is proved that there exists a family of smooth solutions for the 2D isentropic compressible Navier-Stokes-Korteweg equations converging to the planar rarefaction wave solution with arbitrary strength for the 2D Euler equations. A uniform convergence rate is obtained in terms of the viscosity coefficient and the capillarity away from the initial time. The key ingredients of our proof are the re-scaling technique and energy estimate, in which we also introduce the hyperbolic wave to recover the physical viscosities and capillarity of the inviscid rarefaction wave profile. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] On the low Mach number limit for 2D Navier-Stokes-Korteweg systems
    Hientzsch, Lars Eric
    MATHEMATICS IN ENGINEERING, 2023, 5 (02): : 1 - 26
  • [22] The zero-viscosity limit of the 2D Navier-Stokes equations
    Bona, JL
    Wu, JH
    STUDIES IN APPLIED MATHEMATICS, 2002, 109 (04) : 265 - 278
  • [23] Blow-up of Compressible Navier-Stokes-Korteweg Equations
    Tang, Tong
    Kuang, Jie
    ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) : 1 - 7
  • [24] Asymptotic stability of a nonlinear wave for the compressible Navier-Stokes-Korteweg equations in the half space
    Li, Yeping
    Xu, Rui
    Chen, Zhengzheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [25] VANISHING CAPILLARITY LIMIT OF THE COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE TO THE NAVIER-STOKES EQUATIONS
    Bian, Dongfen
    Yao, Lei
    Zhu, Changjiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) : 1633 - 1650
  • [26] Stability of Planar Rarefaction Wave to 3D Full Compressible Navier–Stokes Equations
    Lin-an Li
    Teng Wang
    Yi Wang
    Archive for Rational Mechanics and Analysis, 2018, 230 : 911 - 937
  • [27] Zero Dissipation Limit to Rarefaction Waves for the 1-D Compressible Navier-Stokes Equations
    Feimin HUANG 1 Xing LI 11 Academy of Mathematics and System Sciences
    Chinese Annals of Mathematics(Series B), 2012, 33 (03) : 385 - 394
  • [28] Zero dissipation limit to rarefaction waves for the 1-D compressible Navier-Stokes equations
    Feimin Huang
    Xing Li
    Chinese Annals of Mathematics, Series B, 2012, 33 : 385 - 394
  • [29] On the Exponential Decay for Compressible Navier-Stokes-Korteweg Equations with a Drag Term
    Bresch, D.
    Gisclon, M.
    Lacroix-Violet, I
    Vasseur, A.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (01)
  • [30] Zero dissipation limit to rarefaction waves for the 1-D compressible Navier-Stokes equations
    Huang, Feimin
    Li, Xing
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (03) : 385 - 394