Formal completions and idempotent completions of triangulated categories of singularities

被引:54
|
作者
Orlov, Dmitri [1 ]
机构
[1] Steklov Math Inst RAN, Algebra Sect, Moscow 119991, Russia
关键词
Triangulated categories of singularities; Idempotent completion; NEGATIVE K-THEORY; SUBCATEGORIES;
D O I
10.1016/j.aim.2010.06.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to prove that the idempotent completions of triangulated categories of singularities of two schemes are equivalent if the formal completions of these schemes along singularities are isomorphic. We also discuss Thomason's theorem on dense subcategories and a relation to the negative K-theory. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:206 / 217
页数:12
相关论文
共 50 条
  • [11] Idempotent completion of triangulated categories
    Balmer, P
    Schlichting, M
    JOURNAL OF ALGEBRA, 2001, 236 (02) : 819 - 834
  • [12] NORMAL COMPLETIONS OF SMALL CATEGORIES
    KENNISON, JF
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (01): : 196 - &
  • [13] Localizations and completions of stable ∞-categories
    Mantovani, Lorenzo
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2024, 151 : 1 - 62
  • [14] Extending valuations to formal completions
    Herrera Govantes, Francisco Javier
    Olalla Acosta, Miguel Angel
    Spivakovsky, Mark
    Teissier, Bernard
    VALUATION THEORY IN INTERACTION, 2014, : 252 - +
  • [15] Completions of discrete cluster categories of type A
    Paquette, Charles
    Yildirim, Emine
    TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 8 (01): : 35 - 64
  • [16] RADICALS AND COMPLETIONS IN CATEGORIES - PRELIMINARY REPORT
    OXFORD, EP
    MINES, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A83 - &
  • [17] How nice are free completions of categories?
    Adamek, Jiri
    Rosicky, Jiri
    TOPOLOGY AND ITS APPLICATIONS, 2020, 273
  • [18] ON CONSTRUCTING WEIGHT STRUCTURES AND EXTENDING THEM TO IDEMPOTENT COMPLETIONS
    Bondarko, Mikhail, V
    Sosnilo, Vladimir A.
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2018, 20 (01) : 37 - 57
  • [19] Completions of posets and formal concept analysis
    Li, Q.-G. (liqingguoli@yahoo.com.cn), 1600, Hunan University (40):
  • [20] Direct limit completions of vertex tensor categories
    Creutzig, Thomas
    McRae, Robert
    Yang, Jinwei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (02)