High density of strong yet deformable intermetallic nanorods leads to an excellent room temperature strength-ductility combination in a high entropy alloy

被引:87
|
作者
Gwalani, Bharat [1 ,2 ]
Dasari, Sriswaroop [1 ]
Sharma, Abhishek [1 ]
Soni, Vishal [1 ]
Shukla, Shivakant [1 ]
Jagetia, Abhinav [1 ]
Agrawal, Priyanshi [1 ]
Mishra, Rajiv S. [1 ]
Banerjee, Rajarshi [1 ]
机构
[1] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76207 USA
[2] Pacific Northwest Natl Lab, Physcial & Computat Directorate, 902 Battelle Blvd, Richland, WA 99354 USA
关键词
High entropy alloys; Precipitation strengthening; Ductility; Twins; High strength; SHEAR LOCALIZATION; HALL-PETCH; PRECIPITATION; CREEP; MECHANISMS; RECRYSTALLIZATION; NUCLEATION; PARTICLES; STABILITY; STRESS;
D O I
10.1016/j.actamat.2021.117234
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces a new microstructural template for high entropy alloys (HEAs), where the face centered cubic (FCC) complex concentrated solid solution is reinforced with a high density of strong, yet deformable, nanorods of an ordered multi-component intermetallic L1(2) compound. Thermodynamic modeling has been employed to design this HEA with a large L1(2) volume fraction. Thermo-mechanical processing by isothermal annealing of the conventionally processed bulk cold-rolled alloy directly at precipitation temperatures, has been applied to produce a high density of uniformly distributed L1(2) nanorods within refined FCC grains, resulting from concomitant recrystallization and discontinuous precipitation processes. The nanorod morphology of the discontinuous L1(2) product has been established from three-dimensional atom probe tomography. The refined grains result in a complete coverage of the microstructure with discontinuously precipitated intermetallic nanorods. This nanorod strengthened HEA exhibits an exceptionally high room temperature yield strength of similar to 1630 MPa, good tensile ductility of similar to 15%, and an ultimate tensile strength of similar to 1720 MPa. Furthermore, a single L1(2) phase alloy, melted based on the precipitate composition in the two-phase FCC + L1(2) HEA, exhibits very high compressive deformability and strain hardenability, unusual for ordered intermetallic compounds. These results open a new strategy for design of fine-grained microstructures strengthened via ordered intermetallic phases, exploiting the beneficial effects of discontinuous precipitation, for achieving very high room temperature tensile strengths while maintaining good ductility. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Transformative high entropy alloy conquers the strength-ductility paradigm by massive interface strengthening
    Nene, S. S.
    Agrawal, P.
    Frank, M.
    Watts, A.
    Shukla, S.
    Morphew, C.
    Chesetti, A.
    Park, J. S.
    Mishra, R. S.
    SCRIPTA MATERIALIA, 2021, 203
  • [32] Multiple minor elements improve strength-ductility synergy of a high-entropy alloy
    Zhu, Shuya
    Gan, Kefu
    Yan, Dingshun
    Han, Liuliu
    Wu, Pengfei
    Li, Zhiming
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [33] A Lightweight AlTiVNb High-Entropy Alloy Film with High Strength-Ductility Synergy and Corrosion Resistance
    Feng, Xiaobin
    Feng, Chuangshi
    Lu, Yang
    MATERIALS, 2022, 15 (23)
  • [34] Role of Cu addition in enhancing strength-ductility synergy in transforming high entropy alloy
    Agrawal, Priyanka
    Gupta, Sanya
    Shukla, Shivakant
    Nene, Saurabh S.
    Thapliyal, Saket
    Toll, Michael P.
    Mishra, Rajiv S.
    MATERIALS & DESIGN, 2022, 215
  • [35] Enhanced strength-ductility synergy by high density heterogeneous precipitation microstructure in high-entropy alloys
    Li, Wei
    Zhang, Jianbao
    Cui, Dexu
    Wang, Xinxin
    Zhang, Pengfei
    Wang, Hanming
    Zhang, Yiwen
    Wang, Haifeng
    Kai, Ji-jung
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 928
  • [36] Refractory high entropy alloy dataset with room temperature ductility screening
    Detor, Andrew
    Oppenheimer, Scott
    Casey, Rebecca
    Crawford, Cole
    DATA IN BRIEF, 2022, 45
  • [37] Synergy of strength-ductility in HfMoTaTiZr refractory high entropy alloy through Cr addition
    Bai, Lei
    Xiao, Yutong
    Wang, Junjun
    Xu, Man
    Wang, Shulin
    Wang, Chuanbin
    Peng, Jian
    RSC ADVANCES, 2024, 14 (02) : 1056 - 1061
  • [38] A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy
    Wu, Pengfei
    Gan, Kefu
    Yan, Dingshun
    Fu, Zhenghong
    Li, Zhiming
    Corrosion Science, 2021, 183
  • [39] A superior combination of strength-ductility in CoCrFeNiMn high-entropy alloy induced by asymmetric rolling and subsequent annealing treatment
    Han, Z. H.
    Liang, S.
    Yang, J.
    Wei, R.
    Zhang, C. J.
    MATERIALS CHARACTERIZATION, 2018, 145 : 619 - 626
  • [40] A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy
    Wu, Pengfei
    Gan, Kefu
    Yan, Dingshun
    Fu, Zhenghong
    Li, Zhiming
    CORROSION SCIENCE, 2021, 183