CONVERGENCE ANALYSIS OF A BDF2 / MIXED FINITE ELEMENT DISCRETIZATION OF A DARCY-NERNST-PLANCK-POISSON SYSTEM

被引:4
|
作者
Frank, Florian [1 ]
Knabner, Peter [2 ]
机构
[1] Rice Univ, CAAM Dept, 6100 Main St, Houston, TX 77005 USA
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Stokes / Darcy-Nernst-Planck-Poisson system; mixed finite elements; backward difference formula; error analysis; porous media; EULER IMPLICIT; HOMOGENIZATION; EQUATIONS; TRANSPORT; CLAYS; MODEL; FLOW;
D O I
10.1051/m2an/2017002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an a priori error analysis of a fully discrete scheme for the numerical solution of the transient, nonlinear Darcy-Nernst-Planck-Poisson system. The scheme uses the second order backward difference formula (BDF2) in time and the mixed finite element method with Raviart-Thomas elements in space. In the first step, we show that the solution of the underlying weak continuous problem is also a solution of a third problem for which an existence result is already established. Thereby a stability estimate arises, which provides an L-&INFIN bound of the concentrations / masses of the system. This bound is used as a level for a cut-off operator that enables a proper formulation of the fully discrete scheme. The error analysis works without semi-discrete intermediate formulations and reveals convergence rates of optimal orders in time and space. Numerical simulations validate the theoretical results for lowest order finite element spaces in two dimensions.
引用
收藏
页码:1883 / 1902
页数:20
相关论文
共 50 条
  • [31] Unconditional superconvergence analysis of a new energy stable nonconforming BDF2 mixed finite element method for BBM-Burgers equation
    Xu, Xuemiao
    Shi, Dongyang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [32] Error Analysis of a Unconditionally Stable BDF2 Finite Element Scheme for the Incompressible Flows with Variable Density
    Yuan Li
    Rong An
    Journal of Scientific Computing, 2023, 95
  • [33] Convergence and Superconvergence Analysis of a Nonconforming Finite Element Variable-Time-Step BDF2 Implicit Scheme for Linear Reaction-Diffusion Equations
    Lifang Pei
    Yifan Wei
    Chaofeng Zhang
    Jiwei Zhang
    Journal of Scientific Computing, 2024, 98
  • [34] A Second Order Accurate, Positivity Preserving Numerical Method for the Poisson–Nernst–Planck System and Its Convergence Analysis
    Chun Liu
    Cheng Wang
    Steven M. Wise
    Xingye Yue
    Shenggao Zhou
    Journal of Scientific Computing, 2023, 97
  • [35] Convergence and Superconvergence Analysis of a Nonconforming Finite Element Variable-Time-Step BDF2 Implicit Scheme for Linear Reaction-Diffusion Equations
    Pei, Lifang
    Wei, Yifan
    Zhang, Chaofeng
    Zhang, Jiwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (03)
  • [36] A Linearized Local Conservative Mixed Finite Element Method for Poisson-Nernst-Planck Equations (vol 77, pg 793, 2018)
    Gao, Huadong
    Sun, Pengtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 818 - 818
  • [37] Banach spaces-based mixed finite element methods for the coupled Navier-Stokes and Poisson-Nernst-Planck equations
    Correa, Claudio I.
    Gatica, Gabriel N.
    Henriquez, Esteban
    Ruiz-Baier, Ricardo
    Solano, Manuel
    CALCOLO, 2024, 61 (02)
  • [38] A Second Order Accurate, Positivity Preserving Numerical Method for the Poisson-Nernst-Planck System and Its Convergence Analysis
    Liu, Chun
    Wang, Cheng
    Wise, Steven M.
    Yue, Xingye
    Zhou, Shenggao
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (01)
  • [39] Convergence Analysis on a Structure-Preserving Numerical Scheme for the Poisson-Nernst-Planck- Cahn-Hilliard System
    Qian, Yiran
    Wang, Cheng
    Zhou, Shenggao
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2023, 4 (02): : 345 - 380
  • [40] A 3-D finite element Poisson-Nernst-Planck model for the analysis of ion transport across ionic channels
    Coco, Salvatore
    Gazzo, Daniela
    Laudani, Antonino
    Pollicino, Giuseppe
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1461 - 1464