Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes

被引:60
|
作者
Zhang, Ziqi [1 ,2 ]
Han, Xiang [1 ,2 ]
Li, Lianchuan [1 ,2 ]
Su, Pengfei [1 ,2 ]
Huang, Wei [1 ,2 ]
Wang, Jianyuan [1 ,2 ]
Xu, Jianfang [1 ,2 ]
Li, Cheng [1 ,2 ]
Chen, Songyan [1 ,2 ]
Yang, Yong [3 ]
机构
[1] Xiamen Univ, Jiujiang Res Inst, Dept Phys, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Collaborat Innovat Ctr Optoelect Semicond & Effic, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Micrometer-sized silicon anodes; Carbon nanotubes; Cu3Si silicide; High rate; Structural stability; SI ANODES; GROWTH; ELECTRODES; PARTICLES; CATALYST;
D O I
10.1016/j.jpowsour.2019.227593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
potholed Micrometer-sized silicon powders, due to its high specific capacity, easy accessibility, and low cost, have been regarded as an attractive anode material for lithium-ion batteries. The severer mechanical instability and high inter-particle resistance during cycling, however, hinder its further application. In this work, a novel potholed micrometer-sized silicon powders (PMSi)/carbon nanotubes (CNT)/C electrode is proposed. The resulting three-dimensional (3D) conductive framework and multi-point contact network exhibit ideal structural stability and high-rate cycling property. Hence, the volume resistivity of PMSi/CNT/C (157 Omega m) is reduced significantly relative to traditional PMSi/commercial carbon nanotubes (CCT)/C composite (400 Omega m). By testing the fabricated half-cell LIB with the PMSi/CNT/C composite anode, high reversible specific capacity of 2533 mAh g(-1) with a remarkable high initial coulombic efficiency of 89.07% and over 840 mA h g(-1) for 1000 cycles at 2 A g(-1) is measured. Even at the rate of 20 A g(-1), the PMSi/CNT/C electrode shows a capacity of 463 mAh g(-1). A full cell contained the PMSi/CNT/C anode and a LiFePO4/LiMn2O4 cathode successfully ignites an LED array (similar to 1.5 W), further demonstrating its outstanding electrical driving property.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes
    Huang, Rui
    Fan, Xing
    Shen, Wanci
    Zhu, Jing
    APPLIED PHYSICS LETTERS, 2009, 95 (13)
  • [22] Waste Windshield-Derived Silicon/Carbon Nanocomposites as High-Performance Lithium-Ion Battery Anodes
    Choi, Mingu
    Kim, Jae-Chan
    Kim, Dong-Wan
    SCIENTIFIC REPORTS, 2018, 8
  • [23] Waste Windshield-Derived Silicon/Carbon Nanocomposites as High-Performance Lithium-Ion Battery Anodes
    Mingu Choi
    Jae-Chan Kim
    Dong-Wan Kim
    Scientific Reports, 8
  • [24] Carbon-carbon composite as anodes for lithium-ion battery systems
    Hossain, S
    Saleh, Y
    Loutfy, R
    JOURNAL OF POWER SOURCES, 2001, 96 (01) : 5 - 13
  • [25] Upcycling of spent lithium-ion battery graphite anodes for a dual carbon lithium-ion capacitor
    Bhattacharjee, Udita
    Bhar, Madhushri
    Bhowmik, Subhajit
    Martha, Surendra K.
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (09) : 2104 - 2116
  • [26] Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes
    Wang, Wei
    Ruiz, Isaac
    Guo, Shirui
    Favors, Zachary
    Bay, Hamed Hosseini
    Ozkan, Mihrimah
    Ozkan, Cengiz S.
    NANO ENERGY, 2014, 3 : 113 - 118
  • [27] Tailoring carboxyl tubular carbon nanofibers/MnO2 composites for high-performance lithium-ion battery anodes
    Huyan, Yu
    Chen, Junjie
    Yang, Ke
    Zhang, Qiuyu
    Zhang, Baoliang
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (03) : 1402 - 1414
  • [28] Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes
    Chen, Yanli
    Hu, Yi
    Shen, Zhen
    Chen, Renzhong
    He, Xia
    Zhang, Xiangwu
    Zhang, Yan
    Wu, Keshi
    ELECTROCHIMICA ACTA, 2016, 210 : 53 - 60
  • [29] Silicon-coated carbon nanofiber hierarchical nanostructures for improved lithium-ion battery anodes
    Simon, Gerard K.
    Maruyama, Benji
    Durstock, Michael F.
    Burton, David J.
    Goswami, Tarun
    JOURNAL OF POWER SOURCES, 2011, 196 (23) : 10254 - 10257
  • [30] Review of silicon-based alloys for lithium-ion battery anodes
    Feng, Zhi-yuan
    Peng, Wen-jie
    Wang, Zhi-xing
    Guo, Hua-jun
    Li, Xin-hai
    Yan, Guo-chun
    Wang, Jie-xi
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (10) : 1549 - 1564