Non-accretive Schrodinger operators and exponential decay of their eigenfunctions

被引:8
|
作者
Krejcirik, D. [1 ,2 ]
Raymond, N. [3 ]
Royer, J. [4 ]
Siegl, P. [5 ,6 ]
机构
[1] Nucl Phys Inst ASCR, Dept Theoret Phys, Rez 25068, Czech Republic
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
[3] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
[4] Univ Toulouse 3, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse 9, France
[5] Univ Bern, Math Inst, Alpeneggstr 22, CH-3012 Bern, Switzerland
[6] Nucl Phys Inst ASCR, Rez 25068, Czech Republic
关键词
SPECTRUM; BOUNDS; FORMS;
D O I
10.1007/s11856-017-1574-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider non-self-adjoint electromagnetic Schrodinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.
引用
收藏
页码:779 / 802
页数:24
相关论文
共 50 条