UNBIASED MONTE CARLO ESTIMATE OF STOCHASTIC DIFFERENTIAL EQUATIONS EXPECTATIONS

被引:8
|
作者
Doumbia, Mahamadou [1 ,2 ]
Oudjane, Nadia [1 ,2 ]
Warin, Xavier [1 ,2 ]
机构
[1] EDF R&D, 7 Blvd Gaspard Monge, F-91120 Palaiseau, France
[2] FiME, Lab Finance Marches Energie, 7 Blvd Gaspard Monge, F-91120 Palaiseau, France
关键词
Unbiased estimate; linear parabolic PDEs; interacting particle systems; EXACT SIMULATION;
D O I
10.1051/ps/2017001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an unbiased Monte Carlo method to compute E(g(X-T)) where g is a Lipschitz function and X an Ito process. This approach extends the method proposed in [16] to the case where X is solution of a multidimensional stochastic differential equation with varying drift and diffusion coefficients. A variance reduction method relying on interacting particle systems is also developed.
引用
收藏
页码:56 / 87
页数:32
相关论文
共 50 条
  • [41] An unbiased Monte Carlo method to solve linear Volterra equations of the second kind
    Dimov, Ivan
    Maire, Sylvain
    Todorov, Venelin
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 1527 - 1540
  • [42] An unbiased Monte Carlo method to solve linear Volterra equations of the second kind
    Ivan Dimov
    Sylvain Maire
    Venelin Todorov
    Neural Computing and Applications, 2022, 34 : 1527 - 1540
  • [43] Approximations for expectations of functionals of solutions to stochastic differential equations
    Egorov, A. D.
    MONTE CARLO METHODS AND APPLICATIONS, 2007, 13 (04): : 275 - 285
  • [44] Markov Chain Monte Carlo and Numerical Differential Equations
    Sanz-Serna, J. M.
    CURRENT CHALLENGES IN STABILITY ISSUES FOR NUMERICAL DIFFERENTIAL EQUATIONS, CETRARO, ITALY 2011, 2014, 2082 : 39 - 88
  • [45] Unbiased Estimators and Multilevel Monte Carlo
    Vihola, Matti
    OPERATIONS RESEARCH, 2018, 66 (02) : 448 - 462
  • [46] On the existence of unbiased Monte Carlo estimators
    Mathe, P
    JOURNAL OF APPROXIMATION THEORY, 1996, 85 (01) : 1 - 15
  • [47] Unbiased Hamiltonian Monte Carlo with couplings
    Heng, J.
    Jacob, P. E.
    BIOMETRIKA, 2019, 106 (02) : 287 - 302
  • [48] Adaptive importance sampling in least-squares Monte Carlo algorithms for backward stochastic differential equations
    Gobet, E.
    Turkedjiev, P.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (04) : 1171 - 1203
  • [49] MULTI-INDEX SEQUENTIAL MONTE CARLO METHODS FOR PARTIALLY OBSERVED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Jasra, Ajay
    Law, Kody J. H.
    Xu, Yaxian
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (03) : 1 - 25
  • [50] Parametric analysis of the oscillatory solutions to stochastic differential equations with the Wiener and Poisson components by the Monte Carlo method
    Artem’ev S.S.
    Yakunin M.A.
    Journal of Applied and Industrial Mathematics, 2017, 11 (2) : 157 - 167