A Dirichlet unit theorem for Drinfeld modules

被引:22
|
作者
Taelman, Lenny [1 ]
机构
[1] Math Inst, NL-2300 RA Leiden, Netherlands
关键词
11G09;
D O I
10.1007/s00208-010-0506-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the module of integral points on a Drinfeld module satisfies an analogue of Dirichlet's unit theorem, despite its failure to be finitely generated. As a consequence, we obtain a construction of a canonical finitely generated sub-module of the module of integral points. We use the results to give a precise formulation of a conjectural analogue of the class number formula.
引用
收藏
页码:899 / 907
页数:9
相关论文
共 50 条
  • [31] Integral points for Drinfeld modules
    Ghioca, Dragos
    JOURNAL OF NUMBER THEORY, 2014, 140 : 93 - 121
  • [32] ON TATE-DRINFELD MODULES
    BAE, SH
    KANG, PL
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (02): : 145 - 151
  • [33] Heights and isogenies of Drinfeld modules
    Breuer, Florian
    Pazuki, Fabien
    Razafinjatovo, Mahefason Heriniaina
    ACTA ARITHMETICA, 2021, 197 (02) : 111 - 128
  • [34] On a reduction map for Drinfeld modules
    Bondarewicz, Wojciech
    Krason, Piotr
    ACTA ARITHMETICA, 2020, 195 (02) : 109 - 129
  • [35] Finding endomorphisms of Drinfeld modules
    Kuhn, Nikolas
    Pink, Richard
    JOURNAL OF NUMBER THEORY, 2022, 232 : 118 - 154
  • [36] GAUSSIAN LAWS ON DRINFELD MODULES
    Kuo, Wentang
    Liu, Yu-Ru
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (07) : 1179 - 1203
  • [37] Formal Drinfeld modules and algebraicity
    Cadic, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (04): : 335 - 338
  • [38] AFFINE MODULES AND THE DRINFELD CENTER
    Das, Paramita
    Ghosh, Shamindra Kumar
    Gupta, Ved Prakash
    MATHEMATICA SCANDINAVICA, 2016, 118 (01) : 119 - 151
  • [39] Linear equations on Drinfeld modules
    Chen, Yen-Tsung
    ADVANCES IN MATHEMATICS, 2023, 423
  • [40] Torsion of Drinfeld modules and gonality
    Schweizer, A
    FORUM MATHEMATICUM, 2004, 16 (06) : 925 - 941