The molten chlorides for aluminum-graphite rechargeable batteries

被引:36
|
作者
Tu, Jiguo [1 ]
Wang, Junxiang [1 ]
Zhu, Hongmin [1 ,2 ]
Jiao, Shuqiang [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Tohoku Univ, Grad Sch Engn, Dept Met, Sendai, Miyagi 9808579, Japan
基金
中国国家自然科学基金;
关键词
Low-temperature molten salt; Ionic conductivity; Polarization potential; Graphite; Aluminum-ion battery; ION BATTERY; INTERCALATION; LITHIUM; ENERGY; LI;
D O I
10.1016/j.jallcom.2019.153285
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A low-cost, high-capacity Al-graphite rechargeable aluminum-ion battery is confirmed to be able to work stably in a quaternary AlCl3-NaCl-LiCl-KCl inorganic molten salt as electrolyte with the lowest eutectic temperature of less than 75 degrees C. The battery shows a stable specific capacity of 114.9 mAh g(-1) at 200 mA g(-1) over 1500 cycles at 90 degrees C. Moreover, the capacity can remain at similar to 85 mAh g(-1) with a higher current density of 800 mA g(-1) over 2600 cycles at 90 degrees C. Importantly, even cycled at 80 degrees C and 100 degrees C, almost 100% capacity retention can be achieved after 5800 cycles when the temperature is back to 90 degrees C, verifying the superior long-term cycling stability under various temperatures. The inherent low-cost and high capacity, as well as outstanding long-term cycling stability, makes it particularly favorable for large-scale energy storage devices. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Thermal properties of aluminum-graphite composites by powder metallurgy
    Chen, J. K.
    Huang, I. S.
    COMPOSITES PART B-ENGINEERING, 2013, 44 (01) : 698 - 703
  • [22] Production of Aluminum-Graphite Composite by Spark Plasma Sintering
    N. A. Rubinkovskii
    D. P. Shornikov
    A. V. Tenishev
    A. G. Zaluzhnyi
    A. G. Zholnin
    Glass and Ceramics, 2019, 76 : 27 - 32
  • [23] Aluminum-Carbon Interaction at the Aluminum-Graphene and Aluminum-Graphite Interfaces
    Reshetniak, V. V.
    Aborkin, A. V.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2020, 130 (02) : 214 - 227
  • [24] PRELIMINARY INVESTIGATION OF JOINING METHODS FOR ALUMINUM-GRAPHITE COMPOSITES
    GODDARD, DM
    PEPPER, RT
    UPP, JW
    KENDALL, EG
    AMERICAN CERAMIC SOCIETY BULLETIN, 1971, 50 (04): : 452 - &
  • [25] Production of Aluminum-Graphite Composite by Spark Plasma Sintering
    Rubinkovskii, N. A.
    Shornikov, D. P.
    Tenishev, A. V.
    Zaluzhnyi, A. G.
    Zholnin, A. G.
    GLASS AND CERAMICS, 2019, 76 (1-2) : 27 - 32
  • [26] Tunable Pseudocapacitive Intercalation of Chloroaluminate Anions into Graphite Electrodes for Rechargeable Aluminum Batteries
    Xu, Jeffrey H.
    Schoetz, Theresa
    McManus, Joseph R.
    Subramanian, Vikesh R.
    Fields, Peter W.
    Messinger, Robert J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (06)
  • [27] A Novel Aluminum-Graphite Dual-Ion Battery
    Zhang, Xiaolong
    Tang, Yongbing
    Zhang, Fan
    Lee, Chun-Sing
    ADVANCED ENERGY MATERIALS, 2016, 6 (11)
  • [28] PROPERTIES OF ALUMINUM-GRAPHITE PARTICLE COMPOSITES MADE USING COPPER COATED GRAPHITE
    SURAPPA, MK
    ROHATGI, PK
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 1978, 31 (5-6): : 488 - &
  • [29] Effects of Graphite on the Corrosion Behavior of Aluminum-Graphite Composite in Sodium Chloride Solutions
    Sherif, El-Sayed M.
    Almajid, A. A.
    Latif, Fahamsyah Hamdan
    Junaedi, Harri
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2011, 6 (04): : 1085 - 1099
  • [30] Molten salts for rechargeable batteries br
    Liu, Huan
    Zhang, Xu
    He, Shiman
    He, Di
    Shang, Yang
    Yu, Haijun
    MATERIALS TODAY, 2022, 60 : 128 - 157