Formal symplectic groupoid

被引:19
|
作者
Cattaneo, AS
Dherin, B
Felder, G
机构
[1] Univ Zurich Irchel, Inst Math, CH-8057 Zurich, Switzerland
[2] ETH Zentrum, D MATH, CH-8092 Zurich, Switzerland
关键词
D O I
10.1007/s00220-004-1199-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multiplicative structure of the trivial symplectic groupoid over R-d associated to the zero Poisson structure can be expressed in terms of a generating function. We address the problem of deforming such a generating function in the direction of a non-trivial Poisson structure so that the multiplication remains associative. We prove that such a deformation is unique under some reasonable conditions and we give the explicit formula for it. This formula turns out to be the semi-classical approximation of Kontsevich's deformation formula. For the case of a linear Poisson structure, the deformed generating function reduces exactly to the CBH formula of the associated Lie algebra. The methods used to prove existence are interesting in their own right as they come from an at first sight unrelated domain of mathematics: the Runge-Kutta theory of the numeric integration of ODE's.
引用
收藏
页码:645 / 674
页数:30
相关论文
共 50 条
  • [21] THE PROBLEM OF FACTORIZATION IN SYMPLECTIC GROUPOID AND THE HAMILTONIAN-SYSTEMS ON SPACES WITH POISSON NONLINEAR BRACKETS
    DALETSKII, AI
    DOKLADY AKADEMII NAUK SSSR, 1989, 308 (05): : 1033 - 1037
  • [22] Geography of non-formal symplectic and contact manifolds
    Bock, Christoph
    FORUM MATHEMATICUM, 2011, 23 (04) : 713 - 727
  • [23] NON-FORMAL CO-SYMPLECTIC MANIFOLDS
    Bazzoni, Giovanni
    Fernandez, Marisa
    Munoz, Vicente
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) : 4459 - 4481
  • [24] INTERIOR PRODUCTS OF FORMAL SERIES AND SYMPLECTIC CLIFFORD ALGEBRAS
    HELMSTETTER, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 293 (01): : 63 - 66
  • [25] Fedosov's formal symplectic groupoids and contravariant connections
    Karabegov, Alexander V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (10) : 1985 - 2009
  • [26] The groupoid structure of groupoid morphisms
    Chen, Bohui
    Du, Cheng-Yong
    Wang, Rui
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 145
  • [27] FUNDAMENTAL GROUPOID AS A TOPOLOGICAL GROUPOID
    BROWN, R
    DANESHNARUIE, G
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1975, 19 (MAR) : 237 - 244
  • [28] Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems
    ZHANG RuiLi
    TANG YiFa
    ZHU BeiBei
    TU XiongBiao
    ZHAO Yue
    ScienceChina(Mathematics), 2016, 59 (02) : 379 - 396
  • [29] Computations in formal symplectic geometry and characteristic classes of moduli spaces
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    QUANTUM TOPOLOGY, 2015, 6 (01) : 139 - 182
  • [30] DERIVATIONS AND AUTOMORPHISMS FOR FORMAL ALGEBRAS ASSOCIATED BY DEFORMATION TO A SYMPLECTIC MANIFOLD
    LICHNEROWICZ, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (01): : 49 - 53