One for two" strategy to prepare MOF-derived NiCo2S4 nanorods grown on carbon cloth for high-performance asymmetric supercapacitors and efficient oxygen evolution reaction

被引:71
|
作者
Wang, Di [1 ]
Tian, Liyong [1 ]
Huang, Jieyu [1 ]
Li, Dawei [1 ]
Liu, Jingyan [1 ]
Xu, Yang [1 ]
Ke, Huizhen [2 ]
Wei, Qufu [1 ,2 ]
机构
[1] Jiangnan Univ, Key Lab Ecotext, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Minjiang Univ, Fujian Key Lab Novel Funct Text Fibers & Mat, Fuzhou 350108, Fujian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Hierarchical structure; Asymmetric supercapacitors; Oxygen evolution reaction; Metal-organic frameworks; Transition metal sulfides; METAL-ORGANIC FRAMEWORKS; NITROGEN-DOPED CARBON; NI FOAM; NANOSHEET ARRAYS; NANOTUBE ARRAYS; BIFUNCTIONAL ELECTROCATALYST; NANOWIRE ARRAYS; HYDROGEN; ELECTRODES; REDUCTION;
D O I
10.1016/j.electacta.2020.135636
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Metal-organic frameworks (MOFs) have recently emerged as promising hierarchical structured porous materials for high-performance energy storage and conversion devices due to their unique tunable structure and excellent porosity. Herein, we reported a "one for two" strategy to prepare NiCo2S4 nanorods directly grown on carbon cloth (NiCo2S4@CC) via a simply modified MOFs-derived approach for high-performance asymmetric supercapacitors and efficient oxygen evolution reaction (OER). As an electrode for asymmetric supercapacitors, the NiCo2S4@CC electrode showed excellent electrochemical performance with high specific capacitance and good rate capability. The asymmetric supercapacitor using NiCo2S4@CC as a cathode electrode and N-doped porous carbon nanosheets grown on the CC (NC@CC ) as an anode electrode achieved a superior energy density and power density and a long cycle life. Furthermore, the NiCo2S4@CC exhibited a notable electrocatalytic activity as an electrocatalyst for OER. The remarkable electrochemical performance of as-prepared NiCo2S4@CC could be mainly attributed to its hierarchical structure, sufficient active sites and low metal-anion bond energy after sulfuration reaction. This work could provide an unprecedented opportunity to fabricate functional materials under rational design for various applications. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] NiCo 2 S 4 nanoparticles grown on reduced graphene oxides for high-performance asymmetric supercapacitors
    Hou, Zhi-Qiang
    Yue, Hui-Ping
    Qi, Yuan-Chun
    Gao, Yong-Ping
    Jia, Xiao-Lu
    Yang, Zhi-Guang
    Liu, Ning-Ning
    Huang, Ke-Jing
    ADVANCED POWDER TECHNOLOGY, 2020, 31 (04) : 1603 - 1611
  • [22] Construction of hierarchical porous carbon coated NiCo2S4 nanowire composites for high-performance supercapacitors
    Liu, Yurong
    Niu, Shaoyu
    Hu, Rong
    JOURNAL OF POROUS MATERIALS, 2021, 28 (05) : 1345 - 1353
  • [23] NiCo2S4 combined 3D hierarchical porous carbon derived from lignin for high-performance supercapacitors
    Li, Jiajun
    Yang, Junyu
    Wang, Peiru
    Cong, Ziyang
    Shi, Feiyan
    Wei, Li
    Wang, Kai
    Tong, Yao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 232
  • [24] Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors
    Liu, Yanping
    Li, Zheling
    Yao, Lei
    Chen, Sanming
    Zhang, Peixin
    Deng, Libo
    CHEMICAL ENGINEERING JOURNAL, 2019, 366 : 550 - 559
  • [25] Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors
    Ning, Xueliang
    Li, Fei
    Zhou, Yu
    Miao, Yue-E
    Wei, Chun
    Liu, Tianxi
    CHEMICAL ENGINEERING JOURNAL, 2017, 328 : 599 - 608
  • [26] NiCo2S4 nanosheets decorated on nitrogen-doped hollow carbon nanospheres as advanced electrodes for high-performance asymmetric supercapacitors
    Li, Bei
    Xie, Ling
    Liu, Yanping
    Yao, Dongrui
    Yao, Lei
    Deng, Libo
    NANOTECHNOLOGY, 2022, 33 (08)
  • [27] MOF-derived ZnCo2O4@NiCo2S4@PPy core-shell nanosheets on Ni foam for high-performance supercapacitors
    Zhu, Jiahui
    Wang, Yan
    Zhang, Xubin
    Cai, Wangfeng
    NANOTECHNOLOGY, 2021, 32 (14)
  • [28] A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors
    Xu, Rui
    Lin, Jianming
    Wu, Jihuai
    Huang, Miaoliang
    Fan, Leqing
    He, Xin
    Wang, Yiting
    Xu, Zedong
    APPLIED SURFACE SCIENCE, 2017, 422 : 597 - 606
  • [29] A dual NiCo metal-organic frameworks derived NiCo2S4 core-shell nanorod arrays as high-performance electrodes for asymmetric supercapacitors
    Gong, Jiaxu
    Yang, Junxiao
    Wang, Jiaheng
    Lv, Linlin
    Wang, Wei
    Pu, Linyu
    Zhang, Huan
    Dai, Yatang
    ELECTROCHIMICA ACTA, 2021, 374
  • [30] MOF-Derived Ni-Doped CoS2 Grown on Carbon Fiber Paper for Efficient Oxygen Evolution Reaction
    Xie, Zhiqiang
    Tang, Hui
    Wang, Ying
    CHEMELECTROCHEM, 2019, 6 (04): : 1206 - 1212