Orbital-Angular-Momentum-Controlled Hybrid Nanowire Circuit

被引:25
|
作者
Ren, Haoran [2 ,3 ]
Wang, Xiaoxia [1 ]
Li, Chenhao [2 ]
He, Chenglin [1 ]
Wang, Yixiong [1 ]
Pan, Anlian [1 ]
Maier, Stefan A. [2 ,4 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Key Lab Micronano Phys & Technol Hunan Prov, Changsha 410082, Hunan, Peoples R China
[2] Ludwig Maximilians Univ Munchen, Fac Phys, Nanoinst Munich, Chair Hybrid Nanosyst, D-80539 Munich, Germany
[3] Macquarie Univ, MQ Photon Res Ctr, Dept Phys & Astron, Macquarie Pk, NSW 2109, Australia
[4] Imperial Coll London, Dept Phys, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Orbital angular momentum; semiconductor nanowires; hybrid integration; photonic logic circuits; integrated photonics; NEAR-FIELD; WAVE-GUIDE; LIGHT; DISCRIMINATION; PLASMONICS; CDS;
D O I
10.1021/acs.nanolett.1c01979
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic nanostructures can enable compact multiplexing of the orbital angular momentum (OAM) of light; however, strong dissipation of the highly localized OAM-distinct plasmonic fields in the near-field region hinders on-chip OAM transmission and processing. Superior transmission efficiency is offered by semiconductor nanowires sustaining highly confined optical modes, but only the polarization degree of freedom has been utilized for their selective excitation. Here we demonstrate that incident OAM beams can selectively excite single-crystalline cadmium sulfide (CdS) nanowires through coupling OAM-distinct plasmonic fields into nanowire waveguides for long-distance transportation. This allows us to build an OAM-controlled hybrid nanowire circuit for optical logic operations including AND and OR gates. In addition, this circuit enables the on-chip photoluminescence readout of OAM-encrypted information. Our results open exciting new avenues not only for nanowire photonics to develop OAM-controlled optical switches, logic gates, and modulators but also for OAM photonics to build ultracompact photonic circuits for information processing.
引用
收藏
页码:6220 / 6227
页数:8
相关论文
共 50 条
  • [41] Controlled switching of orbital angular momentum in an PPLN optical parametric oscillator
    Niu Sujian
    Aierken, Palidan
    Ababaike, Maierhaba
    Wang Shutong
    Yusufu, Taximaiti
    2019 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2019,
  • [42] Orbital angular momentum and generalized transverse momentum distribution
    Zhao, Yong
    Liu, Keh-Fei
    Yang, Yi-Bo
    PHYSICAL REVIEW D, 2016, 93 (05)
  • [43] Parton transverse momentum and orbital angular momentum distributions
    Rajan, Abha
    Courtoy, Aurore
    Engelhardt, Michael
    Liuti, Simonetta
    PHYSICAL REVIEW D, 2016, 94 (03)
  • [44] Resilience of orbital-angular-momentum photonic qubits and effects on hybrid entanglement
    Giovannini, Daniele
    Nagali, Eleonora
    Marrucci, Lorenzo
    Sciarrino, Fabio
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [45] Fiber-Integrated Hybrid Fresnel Lens for Orbital Angular Momentum Demultiplexing
    Men, Yanning
    Xie, Zhenwei
    Du, Luping
    Yuan, Xiaocong
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (08) : 2958 - 2964
  • [46] Identification of hybrid orbital angular momentum modes with deep feedforward neural network
    Huang, Zebin
    Wang, Peipei
    Liu, Junmin
    Xiong, Wenjie
    He, Yanliang
    Zhou, Xinxing
    Xiao, Jiangnan
    Li, Ying
    Chen, Shuqing
    Fan, Dianyuan
    RESULTS IN PHYSICS, 2019, 15
  • [47] Orbital Angular Momentum of Vortex Fields in Corrugated Cylindrical Waveguide Hybrid Mode
    Kawaguchi, Hideki
    Kubo, Shin
    Nakamura, Hiroaki
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (02): : 118 - 121
  • [48] Orbital angular momentum in optical manipulations
    Li, Manman
    Yan, Shaohui
    Zhang, Yanan
    Zhou, Yuan
    Yao, Baoli
    JOURNAL OF OPTICS, 2022, 24 (11)
  • [49] Orbital and Field Angular Momentum in the Nucleon
    D. Singleton
    V. Dzhunushaliev
    Foundations of Physics, 2000, 30 : 1093 - 1105
  • [50] Orbital Angular Momentum With Index Modulation
    Basar, Ertugrul
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (03) : 2029 - 2037