Neumann condition in the Schrodinger-Maxwell system

被引:0
|
作者
Pisani, Lorenzo [1 ]
Siciliano, Gaetano [1 ]
机构
[1] Univ Bari, Dipartimento Interuniv Matemat, I-70125 Bari, Italy
关键词
Schrodinger equation; stationary solutions; electrostatic field; variational methods; eigenvalue problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a system of (nonlinear) Schrodinger and Maxwell equation in a bounded domain, with a Dirichelet boundary condition for the wave function psi and a nonhomogeneous Neumann datum for the electric potential phi. Under a suitable compatibility condition, we establish the existence of infinitely many static solutions psi = u(x) in equilibrium with a purely electrostatic field E = -del phi. Due to the Neumann condition, the same electric field is in equilibrium with stationary solutions psi = e(-iwt)u(x) of arbitrary frequency omega.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 50 条
  • [31] The Existence of Infinitely Many Solutions for the Nonlinear Schrodinger-Maxwell Equations
    Huang, Wen-nian
    Tang, X. H.
    RESULTS IN MATHEMATICS, 2014, 65 (1-2) : 223 - 234
  • [32] Harmonic Analysis in Gaseous Helium by Coherent Schrodinger-Maxwell Method
    Zhang, Lei
    Fan, Zhenhong
    Chen, Rushan
    IEEE ACCESS, 2019, 7 : 127631 - 127638
  • [33] Ground state solutions for a class of generalized quasilinear Schrodinger-Maxwell system with critical growth
    Zhang, Shulin
    Liu, Wenbin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 19135 - 19155
  • [34] Existence and multiplicity of solutions for a class of sublinear Schrodinger-Maxwell equations
    Lv, Ying
    BOUNDARY VALUE PROBLEMS, 2013,
  • [35] Schrodinger-Maxwell systems on non-compact Riemannian manifolds
    Farkas, Csaba
    Kristaly, Alexandru
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 473 - 491
  • [36] ON THE EXISTENCE OF SOLUTIONS FOR SCHRODINGER-MAXWELL SYSTEMS IN R3
    Yang, Minbo
    Zhao, Fukun
    Ding, Yanheng
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (05) : 1655 - 1674
  • [37] SEMICLASSICAL SOLUTIONS FOR THE NONLINEAR SCHRODINGER-MAXWELL EQUATIONS WITH CRITICAL NONLINEARITY
    Huang, Wen-nian
    Tang, X. H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (04): : 1203 - 1217
  • [38] The Combined Schrodinger-Maxwell Problem in the Electronic/Electromagnetic Characterization of Nanodevices
    Pierantoni, Luca
    Mencarelli, Davide
    Rozzi, Tullio
    TIME DOMAIN METHODS IN ELECTRODYNAMICS: A TRIBUTE TO WOLFGANG J.R. HOEFER, 2008, 121 : 105 - 133
  • [39] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRODINGER-MAXWELL EQUATIONS
    Liu, Zhisu
    Guo, Shangjiang
    Zhang, Ziheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03): : 857 - 872
  • [40] On the Schrodinger-Maxwell equations under the effect of a general nonlinear term
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02): : 779 - 791