Synthesis of carbon-rich hafnia thin films by pulsed laser deposition

被引:8
|
作者
Pejakovic, Dusan A. [1 ]
Marschall, Jochen [1 ]
George, Mekha R. [2 ]
Rogers, Bridget R. [2 ]
Nieveen, Wesley R. [3 ]
Pajcini, Vasil [3 ]
机构
[1] SRI Int, Mol Phys Lab, Menlo Pk, CA 94025 USA
[2] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA
[3] Evans Analyt Grp, Sunnyvale, CA 94086 USA
关键词
Films; Transition metal oxides; Carbon; Refractories; HfO2; TEMPERATURE-RANGE; 1400-DEGREES; OXIDATION-KINETICS; SINGLE-CRYSTALS; ZIRCONIUM CARBIDE; RAMAN-SPECTRUM; POLYMER-LIKE; HFO2; CERAMICS; CRYSTALLIZATION; SPECTROSCOPY;
D O I
10.1016/j.jeurceramsoc.2010.01.009
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon-rich ceramics arc an emerging class of materials with attractive high-temperature properties, including resistance to crystallization, dense microstructure, and low porosity. We explored direct synthesis of carbon-rich hafnia, which is known to form as a compact interlayer in the oxide scales of oxidized hafnium carbide. The material was synthesized by pulsed laser deposition, using pure HfO2 targets in C2H2 background gas at low pressures. Stable films up to 700 nm thick and with high molar fractions (similar to 0.1-0 45) of carbon were obtained The predominant chemical bonding of Wand 0 atoms is that of oxygen-deficient HfO2, while carbon is present in elemental or hydrogenated forms. Annealing at 600 degrees C leads to loss of most of the hydrogen from the films, which is accompanied by enhanced sp(2) bonding of carbon The films have amorphous, compact, and finely grained microstructure. Carbon molar fractions higher than similar to 0 2 inhibit microcrystallinity to at least 600 degrees C. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2289 / 2300
页数:12
相关论文
共 50 条
  • [31] Combinatorial pulsed laser deposition of thin films
    Craciun, Valentin
    Craciun, Doina
    Mihailescu, Ion N.
    Socol, Gabriel
    Stefan, Nicolaie
    Miroiu, Marimona
    Galca, Aurelian-Catalin
    Bourne, Gerald
    HIGH-POWER LASER ABLATION VII, PTS 1-2, 2008, 7005
  • [32] Pulsed laser deposition of ZnTe thin films
    Bhumia, S
    Bhattacharya, P
    Bose, DN
    MATERIALS LETTERS, 1996, 27 (06) : 307 - 311
  • [33] Pulsed laser deposition of SmBaCuO thin films
    Di Trolio, A
    Morone, A
    Orlando, S
    Cappuccio, G
    THIN FILMS EPITAXIAL GROWTH AND NANOSTRUCTURES, 1999, 79 : 153 - 155
  • [34] Pulsed LASER Deposition of MgO Thin Films
    Kamarulzaman, Norlida
    Badar, Nurhanna
    ADVANCEMENT OF MATERIALS AND NANOTECHNOLOGY II, 2012, 545 : 38 - 42
  • [35] Pulsed laser deposition of thin films.
    Zherikhin, AN
    TENTH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 1999, 3571 : 72 - 79
  • [36] Pulsed laser deposition of electroceramic thin films
    Technischen Hochschule Aachen, Aachen, Germany
    Appl Surf Sci, (842-848):
  • [37] Pulsed laser deposition of BiCuOSe thin films
    A. Zakutayev
    P. F. Newhouse
    R. Kykyneshi
    P. A. Hersh
    D. A. Keszler
    J. Tate
    Applied Physics A, 2011, 102 : 485 - 492
  • [38] Pulsed laser deposition of nasicon thin films
    Izquierdo, R
    Hanus, F
    Lang, T
    Ivanov, D
    Meunier, M
    Laude, L
    Currie, JF
    Yelon, A
    APPLIED SURFACE SCIENCE, 1996, 96-8 : 855 - 858
  • [39] Pulsed laser deposition of ferroelectric thin films
    Sengupta, S
    McKnight, SH
    Sengupta, LC
    LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING II, 1997, 2991 : 247 - 254
  • [40] Pulsed laser deposition of BiCuOSe thin films
    Zakutayev, A.
    Newhouse, P. F.
    Kykyneshi, R.
    Hersh, P. A.
    Keszler, D. A.
    Tate, J.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (02): : 485 - 492