Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations

被引:2
|
作者
Barnett, D. C. [1 ]
Halburd, R. G.
Morgan, W.
Korhonen, R. J.
机构
[1] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Univ Joensuu, Dept Math, FIN-80101 Joensuu, Finland
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that, if f is a meromorphic function of order zero and q is an element of C, then [GRAPHICS] for all r on a set of logarithmic density 1. The remainder of the paper consists of applications of identity (double dagger) to the study of value distribution of zero-order meromorphic functions, and, in particular, zero-order meromorphic solutions of q-difference equations. The results obtained include q-shift analogues of the second main theorem of Nevanlinna theory, Picard's theorem, and Clunie and Mohon'ko lemmas.
引用
收藏
页码:457 / 474
页数:18
相关论文
共 50 条
  • [31] q-hypergeometric solutions of q-difference equations
    Abramov, SA
    Paule, P
    Petkovsek, M
    DISCRETE MATHEMATICS, 1998, 180 (1-3) : 3 - 22
  • [32] The homogeneous q-difference operator
    Chen, WYC
    Fu, AM
    Zhang, BY
    ADVANCES IN APPLIED MATHEMATICS, 2003, 31 (04) : 659 - 668
  • [33] ON p, q-DIFFERENCE OPERATOR
    Corcino, Roberto B.
    Montero, Charles B.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (03) : 537 - 547
  • [34] On existence of meromorphic solutions for certain q-difference equation
    Peng, Changwen
    Chen, Zongxuan
    Huang, Huawei
    Tao, Lei
    SCIENCEASIA, 2023, 49 (01): : 49 - 55
  • [35] On q-Difference Riccati Equations and Second-Order Linear q-Difference Equations
    Huang, Zhi-Bo
    JOURNAL OF COMPLEX ANALYSIS, 2013,
  • [36] Two q-difference equations and q-operator identities
    Liu, Zhi-Guo
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (11) : 1293 - 1307
  • [37] The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations
    Wang, Zhuo
    Lin, Weichuan
    AIMS MATHEMATICS, 2024, 9 (03): : 5501 - 5522
  • [38] Properties on Solutions of Some q-Difference Equations
    Chen, Bao Qin
    Chen, Zong Xuan
    Li, Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (10) : 1877 - 1886
  • [39] Functional relations for solutions of q-difference equations
    Thomas Dreyfus
    Charlotte Hardouin
    Julien Roques
    Mathematische Zeitschrift, 2021, 298 : 1751 - 1791
  • [40] Functional relations for solutions of q-difference equations
    Dreyfus, Thomas
    Hardouin, Charlotte
    Roques, Julien
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1751 - 1791