Coupling evaporation-based, microfluidic concentration and confocal fluorescence spectroscopy

被引:0
|
作者
Puleo, C. M. [1 ]
Yeh, H. C. [2 ]
Liu, K. J. [1 ]
Ranel, T. [1 ]
Wang, T. H. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Engn Mech, Baltimore, MD 21218 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Detection limits in confocal fluorescence spectroscopy (CFS) have traditionally been restrained by the low molecular detection efficiencies associated with femtoliter probe volumes. In this report, we address this issue by designing a microfluidic evaporator capable of accepting large sample volumes and concentrating biomolecules to a nanoliter-sized, interrogation chamber. Single molecule fluorescence detection within this chamber is enhanced through microfluidic recirculation, enabling single molecule analysis comparable to traditional capillary-based platforms. Proof of concept is demonstrated using a I OX sample concentrator upstream to a 5 nanoliter CFS detection chamber and recording the subsequent increase in single molecule fluorescent bursts. This marriage of active microfluidics and sample processing, and CFS technology offers a novel means of overcoming the limits of single molecule detection in solution.
引用
收藏
页码:200 / +
页数:2
相关论文
共 50 条
  • [31] Confocal Laser-Induced Fluorescence Detection System for a Microfluidic Chip Based on an Embedded System
    Yang, X-B.
    Yan, W-P.
    Wang, X-F.
    Xue, N.
    LASERS IN ENGINEERING, 2012, 23 (3-4) : 245 - 254
  • [32] Evaporation-based method for preparing gelatin foams with aligned tubular pore structures
    Frazier, Shane D.
    Srubar, Wil V., III
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 62 : 467 - 473
  • [33] Temporal Calibration of an Evaporation-Based Spatial Disaggregation Method of SMOS Soil Moisture Data
    Stefan, Vivien-Georgiana
    Merlin, Olivier
    Escorihuela, Maria-Jose
    Molero, Beatriz
    Chihrane, Jamal
    Villar, Josep Maria
    Er-Raki, Salah
    REMOTE SENSING, 2020, 12 (10)
  • [34] Hydrodynamic characteristics of an evaporation-based micro-synthetic jet for micro-propulsion
    Sourtiji, Ehsan
    Peles, Yoav
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2021, 31 (10)
  • [35] Evaluation methodology of gas permeable characterization in a polymer-based microfluidic device by confocal fluorescence imaging
    Ichiyanagi, Mitsuhisa
    Sakai, Keita
    Kidani, Shinya
    Kakinuma, Yasuhiro
    Sato, Yohei
    Hishida, Koichi
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (06)
  • [36] Anabaena cell ageing monitored with confocal fluorescence spectroscopy
    Ke, Shan
    Bindokas, Vytas
    Haselkorn, Robert
    MICROBIOLOGY-SGM, 2015, 161 : 84 - 88
  • [37] Confocal single molecule fluorescence spectroscopy in ultrahigh vacuum
    Blumenfeld, Michael L.
    Tackett, Brandon S.
    Schirra, Laura K.
    Tyler, Jason M.
    Monti, Oliver L. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (10):
  • [38] Confocal fluorescence and Raman spectroscopy of single nanoparticles.
    Basché, T
    Mews, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U235 - U235
  • [39] Determination of the confocal volume for quantitative fluorescence correlation spectroscopy
    Ruettinger, S.
    Buschmann, V.
    Kraemer, B.
    Erdmann, R.
    Macdonald, R.
    Koberling, F.
    CONFOCAL, MULTIPHOTON, AND NONLINEAR MICROSCOPIC IMAGING III, 2007, 6630
  • [40] Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy
    Krmpot, Aleksandar J.
    Nikolic, Stanko N.
    Vitali, Marco
    Papadopoulos, Dimitrios K.
    Oasa, Sho
    Thyberg, Per
    Tisa, Simone
    Kinjo, Masataka
    Nilsson, Lennart
    Gehring, Walter J.
    Terenius, Lars
    Rigler, Rudolf
    Vukojevic, Vladana
    ADVANCED MICROSCOPY TECHNIQUES IV; AND NEUROPHOTONICS II, 2015, 9536