Analytical solution to position dependent mass Schrodinger equation

被引:31
|
作者
Jha, Pankaj K. [1 ,2 ]
Eleuch, Hichem [3 ]
Rostovtsev, Yuri V. [4 ]
机构
[1] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[3] King Saud Univ, Dept Phys & Astron, Coll Sci, Riyadh 11451, Saudi Arabia
[4] Univ N Texas, Dept Phys, Denton, TX 76203 USA
关键词
position dependent mass; Riccati equation; scattering; two-level system; rotating wave approximation;
D O I
10.1080/09500340.2011.562617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using a recently developed technique to solve the Schrodinger equation for constant mass, we have studied the regime in which the mass varies with position, i.e. the position-dependent mass Schrodinger equation (PDMSE). We obtained an analytical solution for the PDMSE and applied our approach to study a position dependent mass m(x) particle scattered by a potential V(x). We have also studied the structural analogy between the PDMSE and the two-level atomic system interacting with a classical field.
引用
收藏
页码:652 / 656
页数:5
相关论文
共 50 条
  • [21] Dirac equation with position-dependent effective mass and solvable potentials in the Schrodinger equation
    Panahi, H.
    Bakhshi, Z.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (17)
  • [22] ANALYTICAL SOLUTION OF THE SCHRODINGER INTEGRAL EQUATION
    Bubenchikov, M. A.
    Bubenchikov, A. M.
    Jambaa, S.
    Lun-Fu, A., V
    Chelnokova, A. S.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2020, (67): : 5 - 17
  • [23] SOLVABLE POTENTIALS WITH POSITION-DEPENDENT EFFECTIVE MASS AND CONSTANT MASS SCHRODINGER EQUATION
    Panahi, H.
    Bakhshi, Z.
    ACTA PHYSICA POLONICA B, 2010, 41 (01): : 11 - 21
  • [24] Position-dependent mass Schrodinger equation for exponential-type potentials
    Ovando, G.
    Pena, J. J.
    Morales, J.
    Lopez-Bonilla, J.
    JOURNAL OF MOLECULAR MODELING, 2019, 25 (09)
  • [25] Quantum Operator Approach Applied to the Position-Dependent Mass Schrodinger Equation
    Ovando, G.
    Pena, J. J.
    Morales, J.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [26] Algebraic approach to the position-dependent mass Schrodinger equation for a singular oscillator
    Dong, Shi-Hai
    Pena, J. J.
    Pacheco-Garcia, C.
    Garcia-Ravelo, J.
    MODERN PHYSICS LETTERS A, 2007, 22 (14) : 1039 - 1045
  • [28] Position dependent mass Schrodinger equation and isospectral potentials: Intertwining operator approach
    Midya, Bikashkali
    Roy, B.
    Roychoudhury, R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [29] Wave-packet revival for the Schrodinger equation with position-dependent mass
    Schmidt, Alexandre G. M.
    PHYSICS LETTERS A, 2006, 353 (06) : 459 - 462
  • [30] Exact solutions of the position-dependent mass Schrodinger equation in D dimensions
    Chen, G
    Chen, ZD
    PHYSICS LETTERS A, 2004, 331 (05) : 312 - 315