Hydrogen sensors based on Pt-loaded WO3 sensing layers

被引:28
|
作者
Bose, R. Jolly [1 ,2 ]
Illyaskutty, Navas [3 ]
Tan, K. S. [4 ]
Rawat, R. S. [4 ]
Matham, Murukeshan Vadakke [5 ]
Kohler, Heinz [3 ]
Pillai, V. P. Mahadevan [1 ]
机构
[1] Univ Kerala Kariavattom, Dept Optoelect, Thiruvananthapuram 695581, Kerala, India
[2] Govt Coll Kariavattom, Dept Phys, Thiruvananthapuram 695581, Kerala, India
[3] Karlsruhe Univ Appl Sci, Inst Sensor & Informat Syst, Moltkestr 30, D-76133 Karlsruhe, Germany
[4] Nanyang Technol Univ, Natl Inst Educ, Nat Sci & Sci Educ, Singapore 637616, Singapore
[5] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Div Mfg Engn, Singapore 637616, Singapore
关键词
THIN-FILMS; GAS SENSORS; DEPOSITION; MECHANISM; CATALYSTS; PD;
D O I
10.1209/0295-5075/114/66002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this letter we report the enhanced sensing of platinum (Pt)-loaded tungsten oxide (WO3) sensor compared to pure WO3 sensor towards hydrogen (H-2) gas at low operating temperature of 200 degrees C. The hydrogen sensing of pure and Pt-loaded WO3 sensors is reported at operating temperatures 200, 300 and 400 degrees C. The presence of Pt promotes the spillover mechanism and the dissociated H-2 atoms can react with adsorbed/lattice oxygen atoms to release electrons which in turn increases the conductivity of the WO3 film. The H-2 sensing mechanism of Pt-loaded WO3 sensor is investigated using micro-Raman spectroscopy. The Raman spectrum of Pt-loaded sensing layer shows a shift of symmetric stretching band from 796 to 804 cm(-1) with the introduction of H-2 gas. Copyright (C) EPLA, 2016
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Visible light-driven photodecomposition system: preparation and application of highly dispersed Pt-loaded WO3 microparticles
    Wang, Sheng
    Wang, Tao
    Liu, Yang
    Gao, Yanlong
    Ding, Yuanwei
    Xu, Xuefei
    Zhang, Xiaolong
    Chen, Wenxing
    MICRO & NANO LETTERS, 2011, 6 (04): : 229 - 232
  • [32] Comparative Study of the Gasochromic Performance of Pd/WO3 and Pt/WO3 Nanotextured Thin Films for Low Concentration Hydrogen Sensing
    Yaacob, M. H.
    Breedon, M.
    Kalantar-zadeh, K.
    Wlodarski, W.
    Li, Y.
    2009 IEEE SENSORS, VOLS 1-3, 2009, : 304 - +
  • [33] Hydrogen and hydrocarbon gas sensing performance of Pt/WO3/SiC MROSiC devices
    Kandasamy, S
    Trinchi, A
    Wlodarski, W
    Comini, E
    Sberveglieri, G
    SENSORS AND ACTUATORS B-CHEMICAL, 2005, 111 : 111 - 116
  • [34] Platinum activated WO3 optical hydrogen sensors
    Coban, Omer
    Gur, Emre
    Tuzemen, Sebahattin
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 6913 - 6915
  • [35] Hydrogen sensors based on Pd-doped WO3 nanostructures and the morphology investigation for their sensing performances optimization
    Boudiba, Abdelhamid
    Zhang, Chao
    Snyders, Rony
    Olivier, Marie-Georges
    Debliquy, Marc
    EUROSENSORS XXV, 2011, 25
  • [36] Hydrogen sensor based on WO3 subnano-clusters and Pt co-loaded on ZrO2
    Shimizu, Ken-ichi
    Chinzei, Isao
    Nishiyama, Hiroyuki
    Kakimoto, Shiro
    Sugaya, Satoshi
    Yokoi, Hitoshi
    Satsuma, Atsushi
    SENSORS AND ACTUATORS B-CHEMICAL, 2008, 134 (02) : 618 - 624
  • [37] Sensing mechanism of hydrogen sensors based on palladium-loaded tungsten oxide (Pd-WO3)
    Boudiba, Abdelhamid
    Roussel, Pascal
    Zhang, Chao
    Olivier, Marie-Georges
    Snyders, Rony
    Debliquy, Marc
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 187 : 84 - 93
  • [38] Room temperature hydrogen sensors based on metal decorated WO3 nanowires
    Kukkola, Jarmo
    Mohl, Melinda
    Leino, Anne-Riikka
    Maklin, Jani
    Halonen, Niina
    Shchukarev, Andrey
    Konya, Zoltan
    Jantunen, Heli
    Kordas, Krisztian
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 186 : 90 - 95
  • [39] Surface AcousticWave Hydrogen Sensors Based on Nanostructured Pd/WO3 Bilayers
    Miu, Dana
    Birjega, Ruxandra
    Viespe, Cristian
    SENSORS, 2018, 18 (11)
  • [40] H2 Sensing Mechanism of Pd-Loaded WO3 Nanoparticle Gas Sensors
    Hua, Zhongqiu
    Yuasa, Masayoshi
    Kida, Tetsuya
    Yamazoe, Noboru
    Shimanoe, Kengo
    CHEMISTRY LETTERS, 2014, 43 (09) : 1435 - 1437