Hyperspectral Image Classification Based on Spectral-Spatial One-Dimensional Manifold Embedding

被引:20
|
作者
Luo, Huiwu [1 ]
Tang, Yuan Yan [1 ]
Wang, Yulong [1 ]
Wang, Jianzhong [2 ]
Yang, Lina [1 ,3 ]
Li, Chunli [1 ]
Hu, Tingbo [4 ]
机构
[1] Univ Macau, Fac Sci & Technol, Macau, Peoples R China
[2] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX 77341 USA
[3] Guangxi Univ, Sch Comp Elect & Informat, Nanning 530004, Peoples R China
[4] Natl Univ Def Technol, Inst Automat, Coll Mechatron & Automat, Changsha 410073, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
High-dimensional data processing; hyperspectral image (HSI) classification; manifold learning (ML); smooth interpolation; smooth ordering; spatial context; spectral-spatial metric; 1-D embedding; FEATURE-EXTRACTION; REGULARIZATION; FRAMEWORK; SUBSPACE; WAVELETS;
D O I
10.1109/TGRS.2016.2560529
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A novel approach called Spectral-Spatial 1-D Manifold Embedding (SS1DME) is proposed in this paper for remotely sensed hyperspectral image (HSI) classification. This novel approach is based on a generalization of the recently developed smooth ordering model, which has gathered a great interest in the image processing area. In the proposed approach, first, we employ the spectral-spatial information-based affinity metric to learn the similarity of HSI pixels, where the contextual information is encoded into the affinity metric using spatial information. In our derived model, based on the obtained affinity metric, the created multiple 1-D manifold embeddings (1DMEs) consist of several different versions of 1DME of the same set of all HSI points. Since each 1DME of the data is a 1-D sequence, a label function on the data can be obtained by applying the simple 1-D signal processing tools (such as interpolation/regression). By collecting the predicted labels from these label functions, we build a subset of the current unlabeled points, on which the labels are correctly labeled with high confidence. Next, we add a proportion of the elements from this subset to the original labeled set to get the updated labeled set, which is used for the next running instance. Repeating this process for several loops, we get an extended labeled set, where the new members are correctly labeled by the label functions with much high confidence. Finally, we utilize the extended labeled set to build the target classifier for the whole HSI pixels. In the whole process, 1DME plays the role of learning data features from the given affinity metric. With the incrementation of learning features during iteration, the proposed scheme will gradually approximate the exact labels of all sample points. The proposed scheme is experimentally demonstrated using four real HSI data sets, exhibiting promising classification performance when compared with other recently introduced spatial analysis alternatives.
引用
收藏
页码:5319 / 5340
页数:22
相关论文
共 50 条
  • [21] Hyperspectral Image Classification Using Spectral-Spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    COMPUTER VISION, PT I, 2017, 771 : 577 - 588
  • [22] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song, Liangliang
    Feng, Zhixi
    Yang, Shuyuan
    Zhang, Xinyu
    Jiao, Licheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8589 - 8601
  • [23] A Complementary Spectral-Spatial Method for Hyperspectral Image Classification
    Shi, Lulu
    Li, Chunchao
    Li, Teng
    Peng, Yuanxi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] Spectral-Spatial Rotation Forest for Hyperspectral Image Classification
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (10) : 4605 - 4613
  • [25] Sparse Representations for the Spectral-Spatial Classification of Hyperspectral Image
    Hamdi, Mohamed Ali
    Ben Salem, Rafika
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 923 - 929
  • [26] Spectral-Spatial Unified Networks for Hyperspectral Image Classification
    Xu, Yonghao
    Zhang, Liangpei
    Du, Bo
    Zhang, Fan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 5893 - 5909
  • [27] Spectral-spatial Hyperspectral Image Classification based on Extended Training Set
    Li, Changli
    Wang, Qingyun
    THIRD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2018, 10828
  • [28] Spectral-Spatial Classification of Hyperspectral Image Based on Support Vector Machine
    Yang, Weiwei
    Song, Haifeng
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2021, 16 (01) : 56 - 74
  • [29] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE BASED ON A JOINT ATTENTION NETWORK
    Pan, Erting
    Ma, Yong
    Mei, Xiaoguang
    Dai, Xiaobing
    Fan, Fan
    Tian, Xin
    Ma, Jiayi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 413 - 416
  • [30] Fusion of Spectral-Spatial Classifiers for Hyperspectral Image Classification
    Zhong, Shengwei
    Chen, Shuhan
    Chang, Chein-, I
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5008 - 5027