Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies

被引:12
|
作者
Scoglio, Caterina M. [1 ]
Bosca, Claudio [1 ,4 ]
Riad, Mahbubul H. [1 ]
Sahneh, Faryad D. [1 ]
Britch, Seth C. [2 ]
Cohnstaedt, Lee W. [3 ]
Linthicum, Kenneth J. [2 ]
机构
[1] Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA
[2] USDA ARS, Ctr Med Agr & Vet Entomol, Gainesville, FL USA
[3] USDA ARS, Ctr Grain & Anim Hlth Res, Manhattan, KS USA
[4] Univ Roma La Sapienza, Dept Elect Engn, Rome, Italy
来源
PLOS ONE | 2016年 / 11卷 / 09期
基金
美国国家科学基金会;
关键词
MOSQUITOS DIPTERA-CULICIDAE; NORTH-AMERICAN MOSQUITOS; VIRUS; CATTLE; TRANSMISSION; LOGARITHMS; DAMBO;
D O I
10.1371/journal.pone.0162759
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Evaluation of nonspreading Rift Valley fever virus as a vaccine vector using influenza virus hemagglutinin as a model antigen
    Oreshkova, N.
    Cornelissen, L. A. H. M.
    de Haan, C. A. M.
    Moormann, R. J. M.
    Kortekaas, J.
    VACCINE, 2014, 32 (41) : 5323 - 5329
  • [22] Dynamic risk model for Rift Valley fever outbreaks in Kenya based on climate and disease outbreak data
    Gikungu, David
    Wakhungu, Jacob
    Siamba, Donald
    Neyole, Edward
    Muita, Richard
    Bett, Bernard
    GEOSPATIAL HEALTH, 2016, 11 (02) : 95 - 103
  • [23] Development of an individual-based model for polioviruses: implications of the selection of network type and outcome metrics
    Rahmandad, H.
    Hu, K.
    Tebbens, R. J. Duintjer
    Thompson, K. M.
    EPIDEMIOLOGY AND INFECTION, 2011, 139 (06): : 836 - 848
  • [24] Assessing COVID-19 vaccination strategies in varied demographics using an individual-based model
    Ben-Zuk, Noam
    Daon, Yair
    Sasson, Amit
    Ben-Adi, Dror
    Huppert, Amit
    Nevo, Daniel
    Obolski, Uri
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [25] Economic optimization of feeding and shipping strategies in pig-fattening using an individual-based model
    Davoudkhani, M.
    Mahe, F.
    Dourmad, J. Y.
    Gohin, A.
    Darrigrand, E.
    Garcia-Launay, F.
    AGRICULTURAL SYSTEMS, 2020, 184
  • [26] Use of an individual-based simulation model to explore and evaluate potential insecticide resistance management strategies
    Slater, Russell
    Stratonovitch, Pierre
    Elias, Jan
    Semenov, Mikhail A.
    Denholm, Ian
    PEST MANAGEMENT SCIENCE, 2017, 73 (07) : 1364 - 1372
  • [27] Uncertainty quantification and sensitivity analysis of COVID-19 exit strategies in an individual-based transmission model
    Gugole, Federica
    Coffeng, Luc E.
    Edeling, Wouter
    Sanderse, Benjamin
    de Vlas, Sake J.
    Crommelin, Daan
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (09)
  • [28] An individual-based model applied to the study of different fishing strategies of Pintado Pseudoplatystoma corruscans (Agassiz, 1829)
    de Souza, A. A.
    Martins, S. G. F.
    Pompeu, P. S.
    BIOSYSTEMS, 2012, 110 (01) : 51 - 59
  • [29] Evaluating coyote management strategies using a spatially explicit, individual-based, socially structured population model
    Conner, Mary M.
    Ebinger, Michael R.
    Knowlton, Frederick F.
    ECOLOGICAL MODELLING, 2008, 219 (1-2) : 234 - 247
  • [30] Two reproductive strategies and their implications for population dynamics: An individual-based model of the poecilogonous spionid Boccardia proboscidea
    Oyarzun, F. X.
    Gruenbaum, D.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2012, 52 : E133 - E133