An End-to-End Deep Learning System for Hop Classification

被引:0
|
作者
Castro, Pedro [1 ]
Moreira, Gladston [1 ]
Luz, Eduardo [1 ]
机构
[1] Univ Fed Ouro Preto, Dept Comp, BR-35400000 Ouro Preto, MG, Brazil
关键词
Deep learning; Convolutional neural networks; Visualization; Task analysis; Image segmentation; IEEE transactions; Computer architecture; Hop; Convolutional neural network; Leaf recognition; Data augmentation; HUMULUS-LUPULUS L; ACIDS;
D O I
10.1109/TLA.2022.9667141
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic classification of plant species is a very challenging and widely studied problem in the literature. Distinguishing different varieties within the same species is an even more challenging task although less explored. Nevertheless, for some species distinguishing the varieties within the species can be of paramount importance.Hops, a plant widely used in beer production, has over 250 cataloged varieties. Although the varieties have similar appearances, their chemical components, which influence the aroma and flavor of the drink, are quite heterogeneous. Therefore, it is important for producers to distinguish which variety the plant belongs to in a simple manner.In this work, an end-to-end deep learning system is proposed to automate the task of hop classification. Five architectures are proposed and evaluated with an uncontrolled environment dataset that includes 12 varieties of hops on 1592 images, from three different cell phone cameras. The best architecture automatically detects the hop leaves on the image and performs the classification using the information of up to 10 leaves. The method achieved an accuracy of 95.69% with an inference time of 672ms. To reach such figures, state-of-the-art convolutional blocks were explored along with data augmentation techniques. Our results show that the system is robust and has a low computational cost.
引用
收藏
页码:430 / 442
页数:13
相关论文
共 50 条
  • [41] VLCnet: Deep Learning Based End-to-End Visible Light Communication System
    Ulkar, Mehmet Gorkem
    Baykas, Tuncer
    Pusane, Ali E.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (21) : 5937 - 5948
  • [42] Deep-learning based end-to-end system for text reading in the wild
    Harizi, Riadh
    Walha, Rim
    Drira, Fadoua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (17) : 24691 - 24719
  • [43] An End-to-End Image Retrieval System Based on Gravitational Field Deep Learning
    Zheng, Qinghe
    Yang, Mingqiang
    Zhang, Qingrui
    Zhang, Xinxin
    Yang, Jiajie
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS, ELECTRONICS AND CONTROL (ICCSEC), 2017, : 936 - 940
  • [44] An End-to-End Deep Learning Histochemical Scoring System for Breast Cancer TMA
    Liu, Jingxin
    Xu, Bolei
    Zheng, Chi
    Gong, Yuanhao
    Garibaldi, Jon
    Soria, Daniele
    Green, Andew
    Ellis, Ian O.
    Zou, Wenbin
    Qiu, Guoping
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) : 617 - 628
  • [45] Deep-learning based end-to-end system for text reading in the wild
    Riadh Harizi
    Rim Walha
    Fadoua Drira
    Multimedia Tools and Applications, 2022, 81 : 24691 - 24719
  • [46] An Analytic End-to-End Collaborative Deep Learning Algorithm
    Li, Sitan
    Cheah, Chien Chern
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3024 - 3029
  • [47] An End-to-End Detection Method for WebShell with Deep Learning
    Qi, Longchen
    Kong, Rui
    Lu, Yang
    Zhuang, Honglin
    2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018), 2018, : 660 - 665
  • [48] End-to-end waveform level receiver with deep learning
    Zhu, Zhaorui
    Yu, Hongyi
    Shen, Caiyao
    IET COMMUNICATIONS, 2022, 16 (11) : 1315 - 1324
  • [49] MINTZAI: End-to-end Deep Learning for Speech Translation
    Etchegoyhen, Thierry
    Arzelus, Haritz
    Gete, Harritxu
    Alvarez, Aitor
    Hernaez, Inma
    Navas, Eva
    Gonzalez-Docasal, Ander
    Osacar, Jaime
    Benites, Edson
    Ellakuria, Igor
    Calonge, Eusebi
    Martin, Maite
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2020, (65): : 97 - 100
  • [50] End-to-End Deep Learning for Driver Distraction Recognition
    Koesdwiady, Arief
    Bedawi, Safaa M.
    Ou, Chaojie
    Karray, Fakhri
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2017, 2017, 10317 : 11 - 18