Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning

被引:73
|
作者
Maponya, Mmamokoma Grace [1 ]
van Niekerk, Adriaan [1 ]
Mashimbye, Zama Eric [1 ]
机构
[1] Univ Stellenbosch, Dept Geog & Environm Studies, Stellenbosch, South Africa
关键词
Pre-harvest crop type classification; Image selection; Operational crop type mapping; Machine learning classifiers; VEGETATION INDEXES; RANDOM FOREST; IMAGERY; SYSTEMS; DISCRIMINATION; IDENTIFICATION; REFLECTANCE; LANDSCAPES; PHENOLOGY; SELECTION;
D O I
10.1016/j.compag.2019.105164
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Timely crop type information (preferably before harvest) is useful for predicting food surpluses or shortages. This study assesses the performance of several machine learning classifiers, namely SVM (support vector machine), DT (decision tree), k-NN (k-nearest neighbour), RF (random forest) and ML (maximum likelihood) for crop type mapping based on a series of Sentinel-2 images. Four experiments with different combinations of image sets were carried out. The first three experiments were undertaken with 1) single-date (uni-temporal) images; 2) combinations of five images selected from the best performing single-date images; and 3) five images selected manually based on crop development stages. The fourth experiment involved the chronologic addition of images to assess the performance of the classifiers when only pre-harvest images are used, with the purpose of investigating how early in the season reasonable accuracies can be achieved. The experiments were carried out in two different sites in the Western Cape Province of South Africa to provide a good representation of the grain-producing areas in the region which has a Mediterranean climate. The significance of image selection on classification accuracies as well as the performance of machine learning classifiers when only pre-harvest images are used were evaluated. The classification results were analysed by comparing overall accuracies and kappa coefficients, while McNemar's test and ANOVA (analysis of variance) were used to assess the statistical significance of the differences in accuracies among experiments. The results show that by selecting images based on individual performance, a viable alternative to selecting images based on crop developmental stages is offered, and that the classification of crops with an entire time series can be just as accurate as when they are classified with a subset of hand-selected images. We also found that good classification accuracies (77.2%) can be obtained with the use of SVM and RF as early as eight weeks before harvest. This result shows that pre-harvest images have the potential to identify crops accurately, which holds much potential for operational within-season crop type mapping.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Turbidity classification of the Paraopeba River using machine learning and Sentinel-2 images
    Batista, Leonardo Vidal
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (05) : 799 - 805
  • [32] Estimating Crop Biophysical Parameters Using Machine Learning Algorithms and Sentinel-2 Imagery
    Kganyago, Mahlatse
    Mhangara, Paidamwoyo
    Adjorlolo, Clement
    REMOTE SENSING, 2021, 13 (21)
  • [33] Bi-modal contrastive learning for crop classification using Sentinel-2 and Planetscope
    Patnala, Ankit
    Stadtler, Scarlet
    Schultz, Martin G.
    Gall, Juergen
    FRONTIERS IN REMOTE SENSING, 2024, 5
  • [34] Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms
    Zhang, Haiyang
    Zhang, Yao
    Liu, Kaidi
    Lan, Shu
    Gao, Tinyao
    Li, Minzan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [35] GARLIC MAPPING FOR SENTINEL-2 TIME-SERIES DATA USING A RANDOM FOREST CLASSIFIER
    Chai, Zhaoyang
    Zhang, Hongyan
    Xu, Xiong
    Zhang, Liangpei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7224 - 7227
  • [36] Understanding deep learning in land use classification based on Sentinel-2 time series
    Campos-Taberner, Manuel
    Javier Garcia-Haro, Francisco
    Martinez, Beatriz
    Izquierdo-Verdiguier, Emma
    Atzberger, Clement
    Camps-Valls, Gustau
    Amparo Gilabert, Maria
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [37] Understanding deep learning in land use classification based on Sentinel-2 time series
    Manuel Campos-Taberner
    Francisco Javier García-Haro
    Beatriz Martínez
    Emma Izquierdo-Verdiguier
    Clement Atzberger
    Gustau Camps-Valls
    María Amparo Gilabert
    Scientific Reports, 10
  • [38] Contrastive-Learning-Based Time-Series Feature Representation for Parcel-Based Crop Mapping Using Incomplete Sentinel-2 Image Sequences
    Zhou, Ya'nan
    Wang, Yan
    Yan, Na'na
    Feng, Li
    Chen, Yuehong
    Wu, Tianjun
    Gao, Jianwei
    Zhang, Xiwang
    Zhu, Weiwei
    REMOTE SENSING, 2023, 15 (20)
  • [39] Generating Virtual Training Labels for Crop Classification from Fused Sentinel-1 and Sentinel-2 Time Series
    Teimouri, Maryam
    Mokhtarzade, Mehdi
    Baghdadi, Nicolas
    Heipke, Christian
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2023, 91 (06): : 413 - 423
  • [40] Vegetation classification in a subtropical region with Sentinel-2 time series data and deep learning
    Zhang, Ming
    Li, Dengqiu
    Li, Guiying
    Lu, Dengsheng
    GEO-SPATIAL INFORMATION SCIENCE, 2025, 28 (01) : 145 - 163