Acid Dye Removal from Aqueous Solution by Using Neodymium(III) Oxide Nanoadsorbents

被引:85
|
作者
Ahmadi, Shahin [1 ]
Mohammadi, Leili [2 ]
Rahdar, Abbas [3 ]
Rahdar, Somayeh [1 ]
Dehghani, Ramin [4 ]
Igwegbe, Chinenye Adaobi [5 ]
Kyzas, George Z. [6 ]
机构
[1] Zabol Univ Med Sci, Dept Environm Hlth, Zabol 986161588, Iran
[2] Zahedan Univ Med Sci, Infect Dis & Trop Med Res Ctr, Resistant TB Inst, PhD Environm Hlth, Zahedan 9816743463, Iran
[3] Univ Zabol, Dept Phys, Fac Sci, Zabol 53898615, Iran
[4] Kerman Univ Med Sci, Dept Environm Hlth, Kerman 7616913555, Iran
[5] Nnamdi Azikiwe Univ, Dept Chem Engn, Awka 420218, Nigeria
[6] Int Hellen Univ, Dept Chem, Kavala 654040, Greece
关键词
acid blue 92; response surface methodology; adsorption; neodymium(iii) oxide; central composite design; water treatment; RESPONSE-SURFACE METHODOLOGY; AZO-DYE; PHOTOCATALYTIC DEGRADATION; WASTE-WATER; ADSORPTION; OXIDATION; DECOLORIZATION; OPTIMIZATION; ADSORBENTS; EQUILIBRIUM;
D O I
10.3390/nano10030556
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the current work, neodymium oxide (Nd2O3) nanoparticles were synthesized and characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The major aim/investigation of this research was to fit/model and optimize the removal of Acid Blue 92 (AB92) dye from synthetic effluents (aqueous solutions) using the adsorption process based on neodymium oxide (Nd2O3) nanoparticles. To optimize the adsorption conditions, central composite design (CCD) based on response surface methodology (RSM) was applied. The effects of pH (3-9), adsorbent dosage (0.1-1 g/L), initial concentration of AB92 (100-300 mg/L), and contact time (10-100 min) on the adsorption process were investigated. Apart from equilibrium and kinetic experiments, thermodynamic evaluation of the adsorption process was also undertaken. The adsorption process was found to have the best fitting to Langmuir isotherm model and pseudo-second-order kinetic equation. Also, the process was found to be spontaneous and favorable with increased temperature. The optimal conditions found were: pH = 3.15, AB92 concentration equal to 138.5 mg/L, dosage of nanoadsorbent equal to 0.83 g/L, and 50 min as contact time, which resulted in 90.70% AB92 removal. High values for the coefficient of determination, R-2 (0.9596) and adjusted R-2 (0.9220) indicated that the removal of AB92 dye using adsorption can be explained and modeled by RSM. The Fisher's F-value (25.4683) denotes that the developed model was significant for AB92 adsorption at a 95% confidence level.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Europium(III) removal from aqueous solution using citric acid modified alkalized Mxene as an adsorbent
    Jia Yan
    Hui Jun Liu
    Lan Xie
    Zhen Liu
    Peng Fei Liu
    Hui Xiang Wen
    Journal of Radioanalytical and Nuclear Chemistry, 2022, 331 : 1063 - 1073
  • [22] REMOVAL OF A BASIC DYE FROM AQUEOUS SOLUTION BY ADSORPTION USING RICE HULLS
    El-Maghraby, A.
    El Deeb, H. A.
    GLOBAL NEST JOURNAL, 2011, 13 (01): : 90 - 98
  • [23] Comments on "removal of methylene blue dye from aqueous solution using citric acid modified apricot stone"
    Bollinger, Jean-Claude
    Hai Nguyen Tran
    Lima, Eder C.
    CHEMICAL ENGINEERING COMMUNICATIONS, 2023, 210 (09) : 1625 - 1630
  • [24] Removal of acid yellow-17 dye from aqueous solution using eco-friendly biosorbent
    Ashraf, Muhammad Aqeel
    Hussain, Masroor
    Mahmood, Karamat
    Wajid, Abdul
    Yusof, Mohamad
    Alias, Yatimah
    Yusoff, Ismail
    DESALINATION AND WATER TREATMENT, 2013, 51 (22-24) : 4530 - 4545
  • [25] Removal of TURQUOISE GN from aqueous solution using graphene oxide
    Mahmudunnabi, Dewan Md.
    Alam, Md. Zahangir
    Nurnabi, Md.
    DESALINATION AND WATER TREATMENT, 2020, 174 : 389 - 399
  • [26] Removal of Arsenic(III) from Aqueous Solution Using Metal Organic Framework-Graphene Oxide Nanocomposite
    Chowdhury, Tonoy
    Zhang, Lei
    Zhang, Junqing
    Aggarwal, Srijan
    NANOMATERIALS, 2018, 8 (12):
  • [27] Cr(III) removal from aqueous solution by alkaline solution
    Sanada, Mariana Chiho
    Hasegawa, Makoto
    Maezawa, Akinori
    Uchida, Shigeo
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2006, 39 (07) : 724 - 730
  • [28] Adsorptive Removal of Cationic Dye from Aqueous Solution by Graphene Oxide/Cellulose Acetate Composite
    Zang, Haoliang
    Li, Yanhui
    Li, Yali
    Chen, Long
    Du, Qiuju
    Zhou, Kaixuan
    Li, Hong
    Wang, Yuqi
    Ci, Lijie
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (08) : 4535 - 4542
  • [29] The usage of CoAl-layered double oxide for removal of toxic dye from aqueous solution
    Tongchoo, Pornnapa
    Intachai, Sonchai
    Pankam, Prakaidao
    Suppaso, Chomponoot
    Khaorapapong, Nithima
    JOURNAL OF METALS MATERIALS AND MINERALS, 2020, 30 (04): : 45 - 50
  • [30] Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution
    Zhang, Xiaomei
    Yu, Hongwen
    Yang, Hongjun
    Wan, Yuchun
    Hu, Hong
    Zhai, Zhuang
    Qin, Jieming
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 437 : 277 - 282