Evaluation of variables affecting crack propagation by Delayed Hydride Cracking in Zr-2.5Nb with different heat treatments

被引:16
|
作者
Mieza, J. I. [1 ,2 ]
Vigna, G. L. [1 ]
Domizzi, G. [1 ]
机构
[1] Ctr Atom Constituyentes, CNEA, Bs As, Argentina
[2] UNSAM CNEA, Inst Sabato, Bs As, Argentina
关键词
TERMINAL SOLID SOLUBILITY; ZR-2.5-PERCENT NB ALLOY; ZIRCONIUM ALLOYS; PRESSURE TUBES; TEMPERATURE MODEL; COMBINED SIF; BETA-PHASE; PCT NB; HYDROGEN; MICROSTRUCTURE;
D O I
10.1016/j.jnucmat.2011.01.101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Delayed Hydride Cracking (DHC) is a failure mechanism that may occur in zirconium alloys used in nuclear reactor core components. The knowledge of the direct effects of the variables affecting the cracking velocity could be used to minimize the risk of crack propagation. In practice, most of these variables as for example the alloy yield stress and hydrogen diffusion coefficient - are coupled and vary during reactor operation, leading to a complex variable dependence of the cracking mechanism. In order to get an insight into the relative effect of these variables, experimental data and a theoretical approach using a generally accepted DHC model were used in this work. A series of DHC velocity measurements were made in Zr-2.5Nb tube with different heat treatments. The yield stress, the Nb concentration in beta phase, and hydrogen solvus of the alloy were measured for different heat treatments. Niobium concentration in beta phase gave an indirect indication of beta-phase continuity and, with a proper correlation, of the hydrogen diffusion coefficient. The obtained values were used as inputs in a theoretical calculation of cracking velocity. Good agreement between experimental data and predicted values was obtained, showing that hydrogen diffusion coefficient was the most relevant variable affecting DHC velocity cracking. Furthermore, this approach has been demonstrated to be useful in estimating DHC velocity in irradiated materials. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 159
页数:10
相关论文
共 50 条
  • [21] EFFECT OF FLAW ORIENTATION ON DELAYED HYDRIDE CRACK INITIATION IN ZR-2.5NB PRESSURE TUBES
    Shek, Gordon K.
    Cui, Jun
    Scarth, Douglas A.
    Xu, Steven
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2013, VOL 6A: MATERIALS AND FABRICATION, 2014,
  • [22] Delayed hydride cracking velocity in Zr-2.5Nb: detection by acoustic emission and theoretical model testing
    Mieza, J. I.
    Vigna, G.
    Chomik, E.
    Domizzi, G.
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (14) : 4945 - 4952
  • [23] Effect of Hydrogen Isotopes on Delayed Hydride Cracking Behavior of Zr-2.5Nb Pressure Tube Material
    Bind, A. K.
    Sunil, Saurav
    Singh, R. N.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2022, 75 (11) : 2767 - 2775
  • [24] Modeling Irradiation Damage in Zr-2.5Nb and Its Effects on Delayed Hydride Cracking Growth Rate
    Bickel, G. A.
    Griffiths, M.
    Chaput, H.
    Buyers, A.
    Coleman, C. E.
    ZIRCONIUM IN THE NUCLEAR INDUSTRY, 2015, 1543 : 800 - 829
  • [25] Delayed hydride cracking velocity in Zr-2.5Nb: detection by acoustic emission and theoretical model testing
    J. I. Mieza
    G. Vigna
    E. Chomik
    G. Domizzi
    Journal of Materials Science, 2008, 43 : 4945 - 4952
  • [26] The effect of annealing on hardness, microstructure and delayed hydride cracking in Zr-2.5Nb pressure tube material
    Jovanovic, MT
    Eadie, RL
    Ma, Y
    Anderson, M
    Sagat, S
    Perovic, V
    MATERIALS CHARACTERIZATION, 2001, 47 (3-4) : 259 - 268
  • [27] Delayed hydride cracking behavior of Zr-2.5Nb alloy pressure tubes for PHWR700
    Sunil, S.
    Bind, A. K.
    Khandelwal, H. K.
    Singh, R. N.
    Chakravartty, J. K.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 466 : 208 - 219
  • [28] Effect of Hydrogen Isotopes on Delayed Hydride Cracking Behavior of Zr-2.5Nb Pressure Tube Material
    A. K. Bind
    Saurav Sunil
    R. N. Singh
    Transactions of the Indian Institute of Metals, 2022, 75 : 2767 - 2775
  • [29] A microstructure-based modeling of delayed hydride cracking in Zr-2.5Nb pressure tube material
    Jha, Anjali
    Sarkar, Subrato
    Singh, I. V.
    Mishra, B. K.
    Singh, Ritu
    ENGINEERING FRACTURE MECHANICS, 2024, 295
  • [30] Anisotropic threshold stress intensity factor, KIH and crack growth rate in delayed hydride cracking of Zr-2.5Nb pressure tubes
    Young Suk Kim
    Sung Soo Kim
    Sang Chul Kwon
    Yong Moo Cheong
    Kyung Soo Im
    Metallurgical and Materials Transactions A, 2002, 33 : 919 - 925