We study stationary solutions of the Schrodinger equation with a monotonic potential U in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form U(x)=Sigma j=1(n) V(x(j)), x = (x(1),...,x(n)) is an element of R-n, with a monotonically increasing function V(y). We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on x(j). We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
UMCS, Inst Math, PL-20031 Lublin, PolandColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Bal, Guillaume
Komorowski, Tomasz
论文数: 0引用数: 0
h-index: 0
机构:
IMPAN, PL-00956 Warsaw, PolandColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Komorowski, Tomasz
Ryzhik, Lenya
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
机构:
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
Angelopoulos, Y.
Aretakis, S.
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
Univ Toronto Scarborough, Dept Math, 1265 Mil Trail, Toronto, ON M1C 1A4, Canada
Univ Toronto, Dept Math, 40 St George St, Toronto, ON, CanadaUniv Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
Aretakis, S.
Gajic, D.
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Dept Math, London SW7 2AZ, England
Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, EnglandUniv Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA