Asymptotics of Wave Functions of the Stationary Schrodinger Equation in the Weyl Chamber

被引:6
|
作者
Dobrokhotov, S. Yu. [1 ,2 ]
Minenkov, D. S. [1 ]
Shlosman, S. B. [3 ,4 ,5 ]
机构
[1] Ishlinsky Inst Problems Mech, Moscow, Russia
[2] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[3] Skolkovo Inst Sci & Technol, Moscow, Russia
[4] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France
[5] RAS, Kharkevich Inst Informat Transmiss Problems, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
stationary Schrodinger equation; boundary value problem; Weyl-chamber-type polyhedral angle; spectrum; quantization condition; Maslov canonical operator; Airy function;
D O I
10.1134/S0040577918110065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study stationary solutions of the Schrodinger equation with a monotonic potential U in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form U(x)=Sigma j=1(n) V(x(j)), x = (x(1),...,x(n)) is an element of R-n, with a monotonically increasing function V(y). We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on x(j). We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.
引用
收藏
页码:1626 / 1634
页数:9
相关论文
共 50 条
  • [1] Asymptotics of Wave Functions of the Stationary Schrödinger Equation in the Weyl Chamber
    S. Yu. Dobrokhotov
    D. S. Minenkov
    S. B. Shlosman
    Theoretical and Mathematical Physics, 2018, 197 : 1626 - 1634
  • [2] Merits of using density matrices instead of wave functions in the stationary Schrodinger equation for systems with symmetries
    Shpagina, E.
    Uskov, F.
    Il'in, N.
    Lychkovskiy, O.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (07)
  • [3] Domains of existence and asymptotics of complex periodic solutions of the stationary nonlinear Schrodinger equation
    Kuratov, A. S.
    Petnikova, V. M.
    Shuvalov, V. V.
    QUANTUM ELECTRONICS, 2008, 38 (02) : 144 - 148
  • [4] Asymptotics for the number of Walks in a Weyl Chamber of Type B
    Feierl, Thomas
    RANDOM STRUCTURES & ALGORITHMS, 2014, 45 (02) : 261 - 305
  • [5] Asymptotics of the Solutions of the Random Schrodinger Equation
    Bal, Guillaume
    Komorowski, Tomasz
    Ryzhik, Lenya
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (02) : 613 - 664
  • [6] Asymptotics of Solution to the Nonstationary Schrodinger Equation
    Omuraliev, Asan
    Kyzy, Peil Esengul
    FILOMAT, 2019, 33 (05) : 1361 - 1368
  • [7] Green functions of the stationary Schrodinger equation and tomographic representation of quantum mechanics
    Man'ko, VI
    Sharapov, VA
    JOURNAL OF RUSSIAN LASER RESEARCH, 2004, 25 (04) : 370 - 382
  • [8] Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes
    Angelopoulos, Y.
    Aretakis, S.
    Gajic, D.
    ADVANCES IN MATHEMATICS, 2018, 323 : 529 - 621
  • [9] The stationary Weyl equation and Cosserat elasticity
    Chervova, Olga
    Vassiliev, Dmitri
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (33)
  • [10] Asymptotics of the scattering coefficients for a generalized Schrodinger equation
    Aktosun, T
    Klaus, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) : 3701 - 3709