Identification of Edible Oil Based on Multi-source Spectra Data Fusion

被引:0
|
作者
Yu Yaru [1 ]
Tu Bing [1 ]
Wang Jie [1 ]
Wu Shuang [1 ]
Zheng Xiao [1 ]
He Dongping [2 ]
机构
[1] Wuhan Polytech Univ, Sch Mech Engn, Wuhan 430023, Hubei, Peoples R China
[2] Wuhan Polytech Univ, Sch Food Sci & Engn, Wuhan 430023, Hubei, Peoples R China
关键词
Edible oil; Data fusion; Raman spectroscopy; Near-infrared spectroscopy; Support vector classification;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An approach based on multi-source spectra data fusion for identification of edible oil is proposed. A qualitative model based on fusion of Raman spectra and near-infrared spectroscopy (Raman-NIR) was established and compared with conventional single-spectra model. The spectra data was pre-processed using the moving average method (MA11), the Savitzky-Golay method (SG9), the adaptive iteratively reweighted penalized least squares method (airPLS), the normalization method (Nor), the multiplicative scatter correction method (MSC), and the standard normal variant and standard normal variant transformation de-trending method (SNV-DT). Then, optimized characteristic variables were selected using the competitive adaptiive reweighted sampling method (CARS-SPA) and the backward interval partial least squares method (BiPLS). Based on that, a model for identification of edible oil was established using the support vector classification method (SVC). The results revealed that the SVC model established can accurately identify and classify eight different edible oil (soybean oil, peanut oil, rapeseed oil, tea seed oil, rice oil, corn oil, sunflower oil, and palm oil). The prediction accuracy for samples in calibration set and prediction set by the proposed model can be 100%, which is superior to that of conventional single-spectra model. The proposed model exhibits excellent generalization capability. Additionally, the study suggests that the Raman-NIR fusion shows improved efficiency in identification of edible oil and great potential for practical application.
引用
收藏
页码:903 / 908
页数:6
相关论文
共 50 条
  • [31] Knowledge Graph Construction in Logistics Based on Multi-source Data Fusion
    Gao, Xinyu
    Zhang, Li
    Zhang, Wenping
    Chen, Haoxuan
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 792 - 802
  • [32] Research on Multi-source Data Fusion Method Based on Bayesian Estimation
    Sun, Tao
    Yu, Min
    PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2016, : 321 - 324
  • [33] A Hybrid Recommendation Model Based on Fusion of Multi-Source Heterogeneous Data
    Ji Z.-Y.
    Pi H.-Y.
    Yao W.-N.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (01): : 126 - 132
  • [34] Multi-source data fusion for intelligent diagnosis based on generalized representation
    Peng, Weimin
    Chen, Aihong
    Chen, Jing
    Xu, Haitao
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [35] A Supplier Group Recognition Framework Based on Multi-source Data Fusion
    Ma, Xinqiang
    Shen, Likai
    Zhong, Baoquan
    Huang, Yi
    Liu, Yong
    Wu, Maonian
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3804 - 3809
  • [36] Factor Graph based Multi-source Data Fusion for Wireless Localization
    Zhao, Wanlong
    Meng, Weixiao
    Chi, Yonggang
    Han, Shuai
    2016 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, 2016,
  • [37] Multi-Source Traffic Data Fusion Method Based on Regulation and Reliability
    Wu, Xinhong
    Jin, Hai
    2009 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS, PROCEEDINGS, 2009, : 715 - 718
  • [38] The Mining of Urban Hotspots Based on Multi-Source Location Data Fusion
    Cai, Li
    Wang, Haoyu
    Sha, Cong
    Jiang, Fang
    Zhang, Yihan
    Zhou, Wei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 2061 - 2077
  • [39] Multi-source Heterogeneous Data Fusion Algorithm Based on Federated Learning
    Zhou, Jincheng
    Lei, Yang
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2023, 2023, 1771 : 46 - 60
  • [40] Data fusion of multi-source imagery based on linear features registration
    Al-Ruzouq, Rami Issa
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (19) : 5011 - 5021