Nearly Neutral Evolution across the Drosophila melanogaster Genome

被引:21
|
作者
Castellano, David [1 ]
James, Jennifer [2 ]
Eyre-Walker, Adam [2 ]
机构
[1] Aarhus Univ, Bioinformat Res Ctr, Aarhus, Denmark
[2] Univ Sussex, Sch Life Sci, Brighton, E Sussex, England
基金
英国自然环境研究理事会;
关键词
nearly neutral; neutral theory; Drosophila; hitchhiking; selective sweeps; Ohta; SLIGHTLY DELETERIOUS MUTATIONS; EFFECTIVE POPULATION-SIZE; MOLECULAR EVOLUTION; NATURAL-SELECTION; PURIFYING SELECTION; SILENT SITES; POLYMORPHISM; FITNESS; GENES; DNA;
D O I
10.1093/molbev/msy164
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Under the nearly neutral theory of molecular evolution, the proportion of effectively neutral mutations is expected to depend upon the effective population size (N-e). Here, we investigate whether this is the case across the genome of Drosophila melanogaster using polymorphism data from North American and African lines. We show that the ratio of the number of nonsynonymous and synonymous polymorphisms is negatively correlated to the number of synonymous polymorphisms, even when the nonindependence is accounted for. The relationship is such that the proportion of effectively neutral nonsynonymous mutations increases by similar to 45% as N-e is halved. However, we also show that this relationship is steeper than expected from an independent estimate of the distribution of fitness effects from the site frequency spectrum. We investigate a number of potential explanations for this and show, using simulation, that this is consistent with a model of genetic hitchhiking: Genetic hitchhiking depresses diversity at neutral and weakly selected sites, but has little effect on the diversity of strongly selected sites.
引用
收藏
页码:2685 / 2694
页数:10
相关论文
共 50 条
  • [31] Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome
    Hewes, RS
    Taghert, PH
    GENOME RESEARCH, 2001, 11 (06) : 1126 - 1142
  • [32] Alternative Splicing Landscape of the Drosophila melanogaster Genome
    Babenko, V. N.
    Aitnazarov, R. B.
    Goncharov, F. A.
    Zhimulev, I. F.
    RUSSIAN JOURNAL OF GENETICS, 2010, 46 (09) : 1036 - 1038
  • [33] Search for regulatory motifs in Drosophila melanogaster genome
    Samsonova, A.
    Dieterich, C.
    Vingron, M.
    Brazma, A.
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE, VOL 1, 2004, : 183 - 186
  • [34] Signatures of Insecticide Selection in the Genome of Drosophila melanogaster
    Duneau, David
    Sun, Haina
    Revah, Jonathan
    San Miguel, Keri
    Kunerth, Henry D.
    Caldas, Ian V.
    Messer, Philipp W.
    Scott, Jeffrey G.
    Buchon, Nicolas
    G3-GENES GENOMES GENETICS, 2018, 8 (11): : 3469 - 3480
  • [35] Characterization of the Drosophila melanogaster genome at the nuclear lamina
    Pickersgill, Helen
    Kalverda, Bernike
    de Wit, Elzo
    Talhout, Wendy
    Fornerod, Maarten
    van Steensel, Bas
    NATURE GENETICS, 2006, 38 (09) : 1005 - 1014
  • [36] Duplication and Gene Conversion in the Drosophila melanogaster Genome
    Osada, Naoki
    Innan, Hideki
    PLOS GENETICS, 2008, 4 (12):
  • [37] Alternative splicing landscape of the Drosophila melanogaster genome
    V. N. Babenko
    R. B. Aitnazarov
    F. A. Goncharov
    I. F. Zhimulev
    Russian Journal of Genetics, 2010, 46 : 1036 - 1038
  • [38] Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome
    Bachtrog, D
    Weiss, S
    Zangerl, B
    Brem, G
    Schlötterer, C
    MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (05) : 602 - 610
  • [39] Fixation of transposable elements in the Drosophila melanogaster genome
    Maside, X
    Assimacopoulos, S
    Charlesworth, B
    GENETICS RESEARCH, 2005, 85 (03) : 195 - 203
  • [40] New horizons in genome engineering of Drosophila melanogaster
    Kondo, Shu
    GENES & GENETIC SYSTEMS, 2014, 89 (01) : 3 - 8